906 research outputs found

    Remaining life of TI-6AL-4V ELI HIP IMPLANT WITH A CRACK

    Get PDF
    Fatigue failure is the main issue in design of hip implants. One way to prolong fatigue life is to use newly developed Ti6Al4V Extra Low Interstitials (ELI) alloy. As the most critical part, hip neck has been in the focus of this analysis, keeping in mind that the lower the thickness is, the higher the movement of joint may be, but reducing remaining life of implants with a crack at the same time. In this research extended Finite Element Method (xFEM) is used to analyse this effec

    Point-like topological defects in bilayer quantum Hall systems

    Full text link
    Following a suggestion given in Phys. Lett. B 571 (2003) 250, we show how a bilayer Quantum Hall system at fillings nu =m/pm+2 can exhibit a point-like topological defect in its edge state structure. Indeed our CFT theory for such a system, the Twisted Model (TM), gives rise in a natural way to such a feature in the twisted sector. Our results are in agreement with recent experimental findings (cond-mat/0503478) which evidence the presence of a topological defect in the bilayer system.Comment: 9 pages, 3 figure

    Annealed disorder, rare regions, and local moments: A novel mechanism for metal-insulator transitions

    Get PDF
    Local magnetic moments in disordered sytems can be described in terms of annealed magnetic disorder, in addition to the underlying quenched disorder. It is shown that for noninteracting electron systems at zero temperature, the annealed disorder leads to a new mechanism, and a new universality class, for a metal-insulator transition. The transition is driven by a vanishing of the thermodynamic density susceptibility rather than by localization effects. The critical behavior near two-dimensions is determined, and the underlying physics is discussed.Comment: 4 pp., LaTeX, no figs., final version as publishe

    Strained graphene structures: from valleytronics to pressure sensing

    Full text link
    Due to its strong bonds graphene can stretch up to 25% of its original size without breaking. Furthermore, mechanical deformations lead to the generation of pseudo-magnetic fields (PMF) that can exceed 300 T. The generated PMF has opposite direction for electrons originating from different valleys. We show that valley-polarized currents can be generated by local straining of multi-terminal graphene devices. The pseudo-magnetic field created by a Gaussian-like deformation allows electrons from only one valley to transmit and a current of electrons from a single valley is generated at the opposite side of the locally strained region. Furthermore, applying a pressure difference between the two sides of a graphene membrane causes it to bend/bulge resulting in a resistance change. We find that the resistance changes linearly with pressure for bubbles of small radius while the response becomes non-linear for bubbles that stretch almost to the edges of the sample. This is explained as due to the strong interference of propagating electronic modes inside the bubble. Our calculations show that high gauge factors can be obtained in this way which makes graphene a good candidate for pressure sensing.Comment: to appear in proceedings of the NATO Advanced Research Worksho

    Influence of rare regions on magnetic quantum phase transitions

    Get PDF
    The effects of quenched disorder on the critical properties of itinerant quantum magnets are considered. Particular attention is paid to locally ordered rare regions that are formed in the presence of quenched disorder even when the bulk system is still in the nonmagnetic phase. It is shown that these local moments or instantons destroy the previously found critical fixed point in the case of antiferromagnets. In the case of itinerant ferromagnets, the critical behavior is unaffected by the rare regions due to an effective long-range interaction between the order parameter fluctuations.Comment: 4 pp., REVTe

    Magnetic Correlations in the Two Dimensional Anderson-Hubbard Model

    Full text link
    The two dimensional Hubbard model in the presence of diagonal and off-diagonal disorder is studied at half filling with a finite temperature quantum Monte Carlo method. Magnetic correlations as well as the electronic compressibility are calculated to determine the behavior of local magnetic moments, the stability of antiferromagnetic long range order (AFLRO), and properties of the disordered phase. The existence of random potentials (diagonal or ``site'' disorder) leads to a suppression of local magnetic moments which eventually destroys AFLRO. Randomness in the hopping elements (off-diagonal disorder), on the other hand, does not significantly reduce the density of local magnetic moments. For this type of disorder, at half-filling, there is no ``sign-problem'' in the simulations as long as the hopping is restricted between neighbor sites on a bipartite lattice. This allows the study of sufficiently large lattices and low temperatures to perform a finite-size scaling analysis. For off-diagonal disorder AFLRO is eventually destroyed when the fluctuations of antiferromagnetic exchange couplings exceed a critical value. The disordered phase close to the transition appears to be incompressible and shows an increase of the uniform susceptibility at low temperatures.Comment: 10 pages, REVTeX, 14 figures included using psfig.st
    corecore