173 research outputs found

    Destruction of Anderson localization in quantum nonlinear Schr\"odinger lattices

    Full text link
    The four-wave interaction in quantum nonlinear Schr\"odinger lattices with disorder is shown to destroy the Anderson localization of waves, giving rise to unlimited spreading of the nonlinear field to large distances. Moreover, the process is not thresholded in the quantum domain, contrary to its "classical" counterpart, and leads to an accelerated spreading of the subdiffusive type, with the dispersion (Δn)2t1/2\langle(\Delta n)^2\rangle \sim t^{1/2} for t+t\rightarrow+\infty. The results, presented here, shed new light on the origin of subdiffusion in systems with a broad distribution of relaxation times.Comment: 4 pages, no figure

    Localization-delocalization transition on a separatrix system of nonlinear Schrodinger equation with disorder

    Full text link
    Localization-delocalization transition in a discrete Anderson nonlinear Schr\"odinger equation with disorder is shown to be a critical phenomenon - similar to a percolation transition on a disordered lattice, with the nonlinearity parameter thought as the control parameter. In vicinity of the critical point the spreading of the wave field is subdiffusive in the limit t+t\rightarrow+\infty. The second moment grows with time as a powerlaw tα\propto t^\alpha, with α\alpha exactly 1/3. This critical spreading finds its significance in some connection with the general problem of transport along separatrices of dynamical systems with many degrees of freedom and is mathematically related with a description in terms fractional derivative equations. Above the delocalization point, with the criticality effects stepping aside, we find that the transport is subdiffusive with α=2/5\alpha = 2/5 consistently with the results from previous investigations. A threshold for unlimited spreading is calculated exactly by mapping the transport problem on a Cayley tree.Comment: 6 pages, 1 figur

    A topological approximation of the nonlinear Anderson model

    Full text link
    We study the phenomena of Anderson localization in the presence of nonlinear interaction on a lattice. A class of nonlinear Schrodinger models with arbitrary power nonlinearity is analyzed. We conceive the various regimes of behavior, depending on the topology of resonance-overlap in phase space, ranging from a fully developed chaos involving Levy flights to pseudochaotic dynamics at the onset of delocalization. It is demonstrated that quadratic nonlinearity plays a dynamically very distinguished role in that it is the only type of power nonlinearity permitting an abrupt localization-delocalization transition with unlimited spreading already at the delocalization border. We describe this localization-delocalization transition as a percolation transition on a Cayley tree. It is found in vicinity of the criticality that the spreading of the wave field is subdiffusive in the limit t\rightarrow+\infty. The second moment grows with time as a powerlaw t^\alpha, with \alpha = 1/3. Also we find for superquadratic nonlinearity that the analog pseudochaotic regime at the edge of chaos is self-controlling in that it has feedback on the topology of the structure on which the transport processes concentrate. Then the system automatically (without tuning of parameters) develops its percolation point. We classify this type of behavior in terms of self-organized criticality dynamics in Hilbert space. For subquadratic nonlinearities, the behavior is shown to be sensitive to details of definition of the nonlinear term. A transport model is proposed based on modified nonlinearity, using the idea of stripes propagating the wave process to large distances. Theoretical investigations, presented here, are the basis for consistency analysis of the different localization-delocalization patterns in systems with many coupled degrees of freedom in association with the asymptotic properties of the transport.Comment: 20 pages, 2 figures; improved text with revisions; accepted for publication in Physical Review

    L\'evy flights on a comb and the plasma staircase

    Get PDF
    We formulate the problem of confined L\'evy flight on a comb. The comb represents a sawtooth-like potential field V(x)V(x), with the asymmetric teeth favoring net transport in a preferred direction. The shape effect is modeled as a power-law dependence V(x)ΔxnV(x) \propto |\Delta x|^n within the sawtooth period, followed by an abrupt drop-off to zero, after which the initial power-law dependence is reset. It is found that the L\'evy flights will be confined in the sense of generalized central limit theorem if (i) the spacing between the teeth is sufficiently broad, and (ii) n>4μn > 4-\mu, where μ\mu is the fractal dimension of the flights. In particular, for the Cauchy flights (μ=1\mu = 1), n>3n>3. The study is motivated by recent observations of localization-delocalization of transport avalanches in banded flows in the Tore Supra tokamak and is intended to devise a theory basis to explain the observed phenomenology.Comment: 13 pages; 3 figures; accepted for publication in Physical Review

    Fractional generalization of the Ginzburg-Landau equation: An unconventional approach to critical phenomena in complex media

    Full text link
    Equations built on fractional derivatives prove to be a powerful tool in the description of complex systems when the effects of singularity, fractal supports, and long-range dependence play a role. In this paper, we advocate an application of the fractional derivative formalism to a fairly general class of critical phenomena when the organization of the system near the phase transition point is influenced by a competing nonlocal ordering. Fractional modifications of the free energy functional at criticality and of the widely known Ginzburg-Landau equation central to the classical Landau theory of second-type phase transitions are discussed in some detail. An implication of the fractional Ginzburg-Landau equation is a renormalization of the transition temperature owing to the nonlocality present.Comment: 10 pages, improved content, submitted for publication to Phys. Lett.

    Self-similar transport processes in a two-dimensional realization of multiscale magnetic field turbulence

    Get PDF
    We present the results of a numerical investigation of charged-particle transport across a synthesized magnetic configuration composed of a constant homogeneous background field and a multiscale perturbation component simulating an effect of turbulence on the microscopic particle dynamics. Our main goal is to analyze the dispersion of ideal test particles faced to diverse conditions in the turbulent domain. Depending on the amplitude of the background field and the input test particle velocity, we observe distinct transport regimes ranging from subdiffusion of guiding centers in the limit of Hamiltonian dynamics to random walks on a percolating fractal array and further to nearly diffusive behavior of the mean-square particle displacement versus time. In all cases, we find complex microscopic structure of the particle motion revealing long-time rests and trapping phenomena, sporadically interrupted by the phases of active cross-field propagation reminiscent of Levy-walk statistics. These complex features persist even when the particle dispersion is diffusive. An interpretation of the results obtained is proposed in connection with the fractional kinetics paradigm extending the microscopic properties of transport far beyond the conventional picture of a Brownian random motion. A calculation of the transport exponent for random walks on a fractal lattice is advocated from topological arguments. An intriguing indication of the topological approach is a gap in the transport exponent separating Hamiltonian-like and fractal random walk-like dynamics, supported through the simulation.Comment: 10 pages (including cover page), 7 figures, improved content, accepted for publication in Physica Script

    E-pile model of self-organized criticality

    Get PDF
    The concept of percolation is combined with a self-consistent treatment of the interaction between the dynamics on a lattice and the external drive. Such a treatment can provide a mechanism by which the system evolves to criticality without fine tuning, thus offering a route to self-organized criticality (SOC) which in many cases is more natural than the weak random drive combined with boundary loss/dissipation as used in standard sand-pile formulations. We introduce a new metaphor, the e-pile model, and a formalism for electric conduction in random media to compute critical exponents for such a system. Variations of the model apply to a number of other physical problems, such as electric plasma discharges, dielectric relaxation, and the dynamics of the Earth's magnetotail.Comment: 4 pages, 2 figure
    corecore