404 research outputs found

    DivIVA controls progeny morphology and diverse ParA proteins regulate cell division or gliding motility in Bdellovibrio bacteriovorus

    Get PDF
    The predatory bacterium B. bacteriovorus grows and divides inside the periplasm of Gram-negative bacteria, forming a structure known as a bdelloplast. Cell division of predators inside the dead prey cell is not by binary fission but instead by synchronous division of a single elongated filamentous cell into odd or even numbers of progeny cells. Bdellovibrio replication and cell division processes are dependent on the finite level of nutrients available from inside the prey bacterium. The filamentous growth and division process of the predator maximizes the number of progeny produced by the finite nutrients in a way that binary fission could not. To learn more about such an unusual growth profile, we studied the role of DivIVA in the growing Bdellovibrio cell. This protein is well known for its link to polar cell growth and spore formation in Gram-positive bacteria, but little is known about its function in a predatory growth context. We show that DivIVA is expressed in the growing B. bacteriovorus cell and controls cell morphology during filamentous cell division, but not the number of progeny produced. Bacterial Two Hybrid (BTH) analysis shows DivIVA may interact with proteins that respond to metabolic indicators of amino-acid biosynthesis or changes in redox state. Such changes may be relevant signals to the predator, indicating the consumption of prey nutrients within the sealed bdelloplast environment. ParA, a chromosome segregation protein, also contributes to bacterial septation in many species. The B. bacteriovorus genome contains three ParA homologs; we identify a canonical ParAB pair required for predatory cell division and show a BTH interaction between a gene product encoded from the same operon as DivIVA with the canonical ParA. The remaining ParA proteins are both expressed in Bdellovibrio but are not required for predator cell division. Instead, one of these ParA proteins coordinates gliding motility, changing the frequency at which the cells reverse direction. Our work will prime further studies into how one bacterium can co-ordinate its cell division with the destruction of another bacterium that it dwells within

    Challenges of using protein antibiotics for pathogen control

    Get PDF
    Bacterial phytopathogens represent a significant threat to many economically important crops. Current control measures often inflict harm on the environment and may ultimately impact on human health through the spread of antibiotic resistance. Antimicrobial proteins such as bacteriocins have been suggested as the next generation of disease control agents since they are able to specifically target the pathogen of interest with minimal impact on the wider microbial community and environment. However, substantial gaps in knowledge with regards to the efficacy and application of bacteriocins to combat phytopathogenic bacteria remain. Here we highlight the immediate challenges the community must address to ensure maximum exploitation of antimicrobial proteins in the field

    Bacteriocins targeting Gram-negative phytopathogenic bacteria: plantibiotics of the future

    Get PDF
    Gram-negative phytopathogenic bacteria are a significant threat to food crops. These microbial invaders are responsible for a plethora of plant diseases and can be responsible for devastating losses in crops such as tomatoes, peppers, potatoes, olives, and rice. Current disease management strategies to mitigate yield losses involve the application of chemicals which are often harmful to both human health and the environment. Bacteriocins are small proteinaceous antibiotics produced by bacteria to kill closely related bacteria and thereby establish dominance within a niche. They potentially represent a safer alternative to chemicals when used in the field. Bacteriocins typically show a high degree of selectivity toward their targets with no off-target effects. This review outlines the current state of research on bacteriocins active against Gram-negative phytopathogenic bacteria. Furthermore, we will examine the feasibility of weaponizing bacteriocins for use as a treatment for bacterial plant diseases

    The Disunity of Consciousness

    Get PDF
    It is commonplace for both philosophers and cognitive scientists to express their allegiance to the "unity of consciousness". This is the claim that a subject’s phenomenal consciousness, at any one moment in time, is a single thing. This view has had a major influence on computational theories of consciousness. In particular, what we call single-track theories dominate the literature, theories which contend that our conscious experience is the result of a single consciousness-making process or mechanism in the brain. We argue that the orthodox view is quite wrong: phenomenal experience is not a unity, in the sense of being a single thing at each instant. It is a multiplicity, an aggregate of phenomenal elements, each of which is the product of a distinct consciousness-making mechanism in the brain. Consequently, cognitive science is in need of a multi-track theory of consciousness; a computational model that acknowledges both the manifold nature of experience, and its distributed neural basis

    Anatomy of the ankle ligaments: a pictorial essay

    Get PDF
    Understanding the anatomy of the ankle ligaments is important for correct diagnosis and treatment. Ankle ligament injury is the most frequent cause of acute ankle pain. Chronic ankle pain often finds its cause in laxity of one of the ankle ligaments. In this pictorial essay, the ligaments around the ankle are grouped, depending on their anatomic orientation, and each of the ankle ligaments is discussed in detail
    corecore