109 research outputs found

    Lasonolide A: synthetic explorations

    Get PDF
    First isolated in 1984 from the marine sponge Forcepia trilabis, lasonolide A was found to inhibit A-549 human lung carcinoma cells and P-388 murine leukemia cell lines among others. This cytotoxic natural product was chosen because of its biological activity and challenging polyketide structure. Interesting structural features include two cis-2,6-substituted tetrahydropyran rings integrated into the highly unsaturated macrolide structure, and a quaternary stereogenic center at C22. Construction of the A-ring showcases a novel zinc triflate-mediated asymmetric alkynylzinc addition hetero-Michael reaction, which was developed to selectively form the 2,6-cis tetrahydropyran motif. To assemble the B-ring, alternate carbon nucleophiles were explored to displace the N-acyl thioimide auxiliary and prepare beta-ketonitrile and beta-ketoester moieties. Coupling of the three fragments via olefination, esterification, and metathesis strategies is also outlined

    Neuraminidase A exposed galactose promotes Streptococcus pneumoniae biofilm formation during colonization.

    Get PDF
    Streptococcus pneumoniae is an opportunistic pathogen that colonizes the nasopharynx. Herein we show that carbon availability is distinct between the nasopharynx and bloodstream of adult humans: glucose being absent in the nasopharynx whereas galactose being abundant. We demonstrate that pneumococcal neuraminidase A (NanA), which cleaves terminal sialic acid residues from host glycoproteins, exposed galactose on the surface of septal epithelial cells thereby increasing its availability during colonization. We observed that mutants of S. pneumoniae deficient in NanA and β-galactosidase A (BgaA) failed to form biofilms in vivo despite normal biofilm-forming abilities in vitro Subsequently, we observed that glucose, sucrose, and fructose were inhibitory for biofilm formation, whereas galactose, lactose and low concentrations of sialic acid were permissive. Together these findings suggested that the genes involved in biofilm formation were under some form of carbon catabolite repression (CCR), a regulatory network during which genes involved in the uptake and metabolism of less-preferred sugars are silenced during growth with preferred sugars. Supporting this notion, we observed that a mutant deficient in pyruvate oxidase, which converts pyruvate to acetyl-phosphate during non-CCR inducing growth conditions, was unable to form biofilms. Subsequent comparative RNA-seq analyses of planktonic- and biofilm-grown pneumococci showed that metabolic pathways involving the conversion of pyruvate to acetyl-phosphate and subsequently leading to fatty acid biosynthesis were consistently up-regulated during diverse biofilm growth conditions. We conclude carbon availability in the nasopharynx impacts pneumococcal biofilm formation in vivo Additionally, biofilm formation involves metabolic pathways not previously appreciated to play an important role

    Managing Invasive Plants on Great Plains Grasslands: A Discussion of Current Challenges

    Get PDF
    The Great Plains of North America encompass approximately 1,300,000 km2 of land from Texas to Saskatchewan. The integrity of these lands is under continual assault by long-established and newly-arrived invasive plant species, which can threaten native species and diminish land values and ecological goods and services by degrading desired grassland resources. The Great Plains are a mixture of privately and publicly owned lands, which leads to a patchwork of varying management goals and strategies for controlling invasive plants. Continually updated knowledge is required for efficient and effective management of threats posed by changing environments and invasive plants. Here we discuss current challenges, contemporary management strategies, and management tools and their integration, in hopes of presenting a knowledge resource for new and experienced land managers and others involved in making decisions regarding invasive plant management in the Great Plains

    Managing Invasive Plants on Great Plains Grasslands: A Discussion of Current Challenges

    Get PDF
    The Great Plains of North America encompass approximately 1,300,000 km2 of land from Texas to Saskatchewan. The integrity of these lands is under continual assault by long-established and newly-arrived invasive plant species, which can threaten native species and diminish land values and ecological goods and services by degrading desired grassland resources. The Great Plains are a mixture of privately and publicly owned lands, which leads to a patchwork of varying management goals and strategies for controlling invasive plants. Continually updated knowledge is required for efficient and effective management of threats posed by changing environments and invasive plants. Here we discuss current challenges, contemporary management strategies, and management tools and their integration, in hopes of presenting a knowledge resource for new and experienced land managers and others involved in making decisions regarding invasive plant management in the Great Plains

    Metabolic Reprogramming of Macrophages: GLUCOSE TRANSPORTER 1 (GLUT1)-MEDIATED GLUCOSE METABOLISM DRIVES A PROINFLAMMATORY PHENOTYPE

    Get PDF
    Glucose is a critical component in the proinflammatory response of macrophages (MΦs). However, the contribution of glucose transporters (GLUTs) and the mechanisms regulating subsequent glucose metabolism in the inflammatory response are not well understood. Because MΦs contribute to obesity-induced inflammation, it is important to understand how substrate metabolism may alter inflammatory function. We report that GLUT1 (SLC2A1) is the primary rate-limiting glucose transporter on proinflammatory-polarized MΦs. Furthermore, in high fat diet-fed rodents, MΦs in crown-like structures and inflammatory loci in adipose and liver, respectively, stain positively for GLUT1. We hypothesized that metabolic reprogramming via increased glucose availability could modulate the MΦ inflammatory response. To increase glucose uptake, we stably overexpressed the GLUT1 transporter in RAW264.7 MΦs (GLUT1-OE MΦs). Cellular bioenergetics analysis, metabolomics, and radiotracer studies demonstrated that GLUT1 overexpression resulted in elevated glucose uptake and metabolism, increased pentose phosphate pathway intermediates, with a complimentary reduction in cellular oxygen consumption rates. Gene expression and proteome profiling analysis revealed that GLUT1-OE MΦs demonstrated a hyperinflammatory state characterized by elevated secretion of inflammatory mediators and that this effect could be blunted by pharmacologic inhibition of glycolysis. Finally, reactive oxygen species production and evidence of oxidative stress were significantly enhanced in GLUT1-OE MΦs; antioxidant treatment blunted the expression of inflammatory mediators such as PAI-1 (plasminogen activator inhibitor 1), suggesting that glucose-mediated oxidative stress was driving the proinflammatory response. Our results indicate that increased utilization of glucose induced a ROS-driven proinflammatory phenotype in MΦs, which may play an integral role in the promotion of obesity-associated insulin resistance

    The Characterization of Twenty Sequenced Human Genomes

    Get PDF
    We present the analysis of twenty human genomes to evaluate the prospects for identifying rare functional variants that contribute to a phenotype of interest. We sequenced at high coverage ten “case” genomes from individuals with severe hemophilia A and ten “control” genomes. We summarize the number of genetic variants emerging from a study of this magnitude, and provide a proof of concept for the identification of rare and highly-penetrant functional variants by confirming that the cause of hemophilia A is easily recognizable in this data set. We also show that the number of novel single nucleotide variants (SNVs) discovered per genome seems to stabilize at about 144,000 new variants per genome, after the first 15 individuals have been sequenced. Finally, we find that, on average, each genome carries 165 homozygous protein-truncating or stop loss variants in genes representing a diverse set of pathways

    Natural and Vaccine-Mediated Immunity to Salmonella Typhimurium is Impaired by the Helminth Nippostrongylus brasiliensis

    Get PDF
    The impact of exposure to multiple pathogens concurrently or consecutively on immune function is unclear. Here, immune responses induced by combinations of the bacterium Salmonella Typhimurium (STm) and the helminth Nippostrongylus brasiliensis (Nb), which causes a murine hookworm infection and an experimental porin protein vaccine against STm, were examined. Mice infected with both STm and Nb induced similar numbers of Th1 and Th2 lymphocytes compared with singly infected mice, as determined by flow cytometry, although lower levels of secreted Th2, but not Th1 cytokines were detected by ELISA after re-stimulation of splenocytes. Furthermore, the density of FoxP3+ T cells in the T zone of co-infected mice was lower compared to mice that only received Nb, but was greater than those that received STm. This reflected the intermediate levels of IL-10 detected from splenocytes. Co-infection compromised clearance of both pathogens, with worms still detectable in mice weeks after they were cleared in the control group. Despite altered control of bacterial and helminth colonization in co-infected mice, robust extrafollicular Th1 and Th2-reflecting immunoglobulin-switching profiles were detected, with IgG2a, IgG1 and IgE plasma cells all detected in parallel. Whilst extrafollicular antibody responses were maintained in the first weeks after co-infection, the GC response was less than that in mice infected with Nb only. Nb infection resulted in some abrogation of the longer-term development of anti-STm IgG responses. This suggested that prior Nb infection may modulate the induction of protective antibody responses to vaccination. To assess this we immunized mice with porins, which confer protection in an antibody-dependent manner, before challenging with STm. Mice that had resolved a Nb infection prior to immunization induced less anti-porin IgG and had compromised protection against infection. These findings demonstrate that co-infection can radically alter the development of protective immunity during natural infection and in response to immunization

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo
    corecore