983 research outputs found

    Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer

    Get PDF

    The effects of rhythmic structure on tapping accuracy

    Get PDF
    Prior investigations of simple rhythms in familiar time signatures have shown the importance of several mechanisms; notably, those related to metricization and grouping. But there has been limited study of complex rhythms, including those in unfamiliar time signatures, such as are found outside mainstream Western music. Here, we investigate how the structures of 91 rhythms with nonisochronous onsets (mostly complex, several in unfamiliar time signatures) influence the accuracy, velocity, and timing of taps made by participants attempting to synchronize with these onsets. The onsets were piano-tone cues sounded at a well-formed subset of isochronous cymbal pulses; the latter occurring every 234 ms. We modelled tapping at both the rhythm level and the pulse level; the latter provides insight into how rhythmic structure makes some cues easier to tap and why incorrect (uncued) taps may occur. In our models, we use a wide variety of quantifications of rhythmic features, several of which are novel and many of which are indicative of underlying mechanisms, strategies, or heuristics. The results show that, for these tricky rhythms, taps are disrupted by unfamiliar period lengths and are guided by crude encodings of each rhythm: the density of rhythmic cues, their circular mean and variance, and recognizing common small patterns and the approximate positions of groups of cues. These lossy encodings are often counterproductive for discriminating between cued and uncued pulses and are quite different to mechanisms—such as metricization and emphasizing group boundaries—thought to guide tapping behaviours in learned and familiar rhythms

    Binding characteristics of a panel of monoclonal antibodies against the ligand binding domain of the human LDLr

    Get PDF
    To obtain a panel of monoclonal antibodies (MAbs) to study the folding and conformation of the low density lipoprotein receptor (LDLr), we have generated hybridomas from LDLr-deficient mice that had been immunized with the extracellular domain of the human LDLr. The 12 MAbs were specific for the ligand binding domain of the LDLr, with individual MAbs recognizing epitopes in ligand binding repeats 1, 2, 3, 5, and 7. A subset of the MAbs failed to react with the LDLr when disulfide bonds were reduced, and one MAb, specific for an epitope that spans ligand binding repeats 1 and 2, recognized two conformational forms of the LDLr with different affinities. Antibodies specific for ligand binding repeats 3, 5, and 7 completely blocked the binding of LDL particles to the LDLr on cultured human fibroblasts, whereas MAbs with epitopes in ligand binding repeats 1 and 2 partially blocked the binding of LDL to the LDLr. These anti-LDLr MAbs will serve as useful probes for further analysis of LDLr conformation and LDLr-mediated lipoprotein binding

    Results of the 2016 Indianapolis Biodiversity Survey, Marion County, Indiana

    Get PDF
    Surprising biodiversity can be found in cities, but urban habitats are understudied. We report on a bioblitz conducted primarily within a 24-hr period on September 16 and 17, 2016 in Indianapolis, Indiana, USA. The event focused on stretches of three waterways and their associated riparian habitat: Fall Creek (20.6 ha; 51 acres), Pleasant Run (23.5 ha; 58 acres), and Pogue’s Run (27.1 ha; 67 acres). Over 75 scientists, naturalists, students, and citizen volunteers comprised 14 different taxonomic teams. Five hundred ninety taxa were documented despite the rainy conditions. A brief summary of the methods and findings are presented here. Detailed maps of survey locations and inventory results are available on the Indiana Academy of Science website (https://www.indianaacademyofscience.org/)

    Supernova Remnants in the Fossil Starburst in M82

    Full text link
    We report the discovery of ten compact H-alpha-bright sources in the post-starburst region northeast of the center of M82, ``M82 B.'' These objects have H alpha luminosities and sizes consistent with Type II supernova remnants (SNRs). They fall on the same H alpha surface brightness-diameter (Sigma-D) relation defined by SNRs in other nearby star-forming galaxies, with the M82 candidates lying preferentially at the small diameter end. These are the first candidates for optically-visible SNRs in M82 outside the heavily obscured central starburst within ~250 pc from the galactic center. If these sources are SNRs, they set an upper limit to the end of the starburst in region ``B2,'' about 500 pc from the galaxy's core, of ~50 Myr. Region ``B1,'' about 1000 pc from the core, lacks good SNR candidates and is evidently somewhat older. This suggests star formation in the galaxy has propagated inward toward the present-day intense starburst core.Comment: Re-submitted to AJ, referee's comments taken into account, 15 pages LaTeX preprint style, 4 postscript figures; full-resolution figures available from http://www.astro.virginia.edu/~rd7a/snrs/ Changes: minor textual changes and orientation/axes of Fig.

    Binding of an antibody mimetic of the human low density lipoprotein receptor to apolipoprotein E is governed through electrostatic forces. Studies using site-directed mutagenesis and molecular modeling.

    Get PDF
    Monoclonal antibody 2E8 is specific for an epitope that coincides with the binding site of the low density lipoprotein receptor (LDLR) on human apoE. Its reactivity with apoE variants resembles that of the LDLR: it binds well with apoE3 and poorly with apoE2. The heavy chain complementarity-determining region (CDRH) 2 of 2E8 shows homology to the ligand-binding domain of the LDLR. To define better the structural basis of the 2E8/apoE interaction and particularly the role of electrostatic interactions, we generated and characterized a panel of 2E8 variants. Replacement of acidic residues in the 2E8 CDRHs showed that Asp52, Glu53, and Asp56 are essential for high-affinity binding. Although Asp31 (CDRH1), Glu58 (CDRH2), and Asp97 (CDRH3) did not appear to be critical, the Asp97 → Ala variant acquired reactivity with apoE2. A Thr57 → Glu substitution increased affinity for both apoE3 and apoE2. The affinities of wild-type 2E8 and variants for apoE varied inversely with ionic strength, suggesting that electrostatic forces contribute to both antigen binding and isoform specificity. We propose a model of the 2E8·apoE immune complex that is based on the 2E8 and apoE crystal structures and that is consistent with the apoE-binding properties of wild-type 2E8 and its variants. Given the similarity between the LDLR and 2E8 in terms of specificity, the LDLR/ligand interaction may also have an important electrostatic component

    The National Cancer Institute Cohort Consortium : An International Pooling Collaboration of 58 Cohorts from 20 Countries

    Get PDF
    Cohort studies have been central to the establishment of the known causes of cancer. To dissect cancer etiology in more detail-for instance, for personalized risk prediction and prevention, assessment of risks of subtypes of cancer, and assessment of small elevations in risk-there is a need for analyses of far larger cohort datasets than available in individual existing studies. To address these challenges, the NCI Cohort Consortium was founded in 2001. It brings together 58 cancer epidemiology cohorts from 20 countries to undertake large-scale pooling research. The cohorts in aggregate include over nine million study participants, with biospecimens available for about two million of these. Research in the Consortium is undertaken by >40 working groups focused on specific cancer sites, exposures, or other research areas. More than 180 publications have resulted from the Consortium, mainly on genetic and other cancer epidemiology, with high citation rates. This article describes the foundation of the Consortium; its structure, governance, and methods of working; the participating cohorts; publications; and opportunities. The Consortium welcomes newmembers with cancer-oriented cohorts of 10,000 or more participants and an interest in collaborative research. (C) 2018 AACR.Peer reviewe
    • …
    corecore