80,842 research outputs found

    Assessment of Models of Galactic Thermal Dust Emission Using COBE/FIRAS and COBE/DIRBE Observations

    Full text link
    Accurate modeling of the spectrum of thermal dust emission at millimeter wavelengths is important for improving the accuracy of foreground subtraction for CMB measurements, for improving the accuracy with which the contributions of different foreground emission components can be determined, and for improving our understanding of dust composition and dust physics. We fit four models of dust emission to high Galactic latitude COBE/FIRAS and COBE/DIRBE observations from 3 millimeters to 100 microns and compare the quality of the fits. We consider the two-level systems model because it provides a physically motivated explanation for the observed long wavelength flattening of the dust spectrum and the anticorrelation between emissivity index and dust temperature. We consider the model of Finkbeiner, Davis, and Schlegel because it has been widely used for CMB studies, and the generalized version of this model recently applied to Planck data by Meisner and Finkbeiner. For comparison we have also fit a phenomenological model consisting of the sum of two graybody components. We find that the two-graybody model gives the best fit and the FDS model gives a significantly poorer fit than the other models. The Meisner and Finkbeiner model and the two-level systems model remain viable for use in Galactic foreground subtraction, but the FIRAS data do not have sufficient signal-to-noise ratio to provide a strong test of the predicted spectrum at millimeter wavelengths.Comment: 17 pages, 7 figures. Accepted for publication in Ap

    Grain opacity and the bulk composition of extrasolar planets. I. Results from scaling the ISM opacity

    Full text link
    The opacity due to grains in the envelope of a protoplanet regulates the accretion rate of gas during formation, thus the final bulk composition of planets with primordial H/He is a function of it. Observationally, for exoplanets with known mass and radius it is possible to estimate the bulk composition via internal structure models. We first determine the reduction factor of the ISM grain opacity f_opa that leads to gas accretion rates consistent with grain evolution models. We then compare the bulk composition of synthetic low-mass and giant planets at different f_opa with observations. For f_opa=1 (full ISM opacity) the synthetic low-mass planets have too small radii, i.e., too low envelope masses compared to observations. At f_opa=0.003, the value calibrated with the grain evolution models, synthetic and actual planets occupy similar mass-radius loci. The mean enrichment of giant planets relative to the host star as a function of planet mass M can be approximated as Z_p/Z_star = beta*(M/M_Jup)^alpha. We find alpha=-0.7 independent of f_opa in synthetic populations in agreement with the observational result (-0.71+-0.10). The absolute enrichment level decreases from beta=8.5 at f_opa=1 to 3.5 at f_opa=0. At f_opa=0.003 one finds beta=7.2 which is similar to the observational result (6.3+-1.0). We thus find observational hints that the opacity in protoplanetary atmospheres is much smaller than in the ISM even if the specific value of the grain opacity cannot be constrained here. The result for the enrichment of giant planets helps to distinguish core accretion and gravitational instability. In the simplest picture of core accretion where first a critical core forms and afterwards only gas is added, alpha=-1. If a core accretes all planetesimals inside the feeding zone, alpha=-2/3. The observational result lies between these values, pointing to core accretion as the formation mechanism.Comment: 21 pages, 15 figures. Accepted for A&

    The Swift X-ray monitoring campaign of the center of the Milky Way

    Get PDF
    In 2006 February, shortly after its launch, Swift began monitoring the center of the Milky Way with the onboard X-Ray Telescope using short 1-ks exposures performed every 1-4 days. Between 2006 and 2014, over 1200 observations have been obtained, amounting to ~1.2 Ms of exposure time. This has yielded a wealth of information about the long-term X-ray behavior of the supermassive black hole Sgr A*, and numerous transient X-ray binaries that are located within the 25'x25' region covered by the campaign. In this review we highlight the discoveries made during these first nine years, which includes 1) the detection of seven bright X-ray flares from Sgr A*, 2) the discovery of the magnetar SGR J1745-29, 3) the first systematic analysis of the outburst light curves and energetics of the peculiar class of very-faint X-ray binaries, 4) the discovery of three new transient X-ray sources, 5) exposing low-level accretion in otherwise bright X-ray binaries, and 6) the identification of a candidate X-ray binary/millisecond radio pulsar transitional object. We also reflect on future science to be done by continuing this Swift's legacy campaign of the Galactic center, which includes high-cadence monitoring of how the interaction between the gaseous object `G2' and Sgr A* plays out in the future.Comment: 13 pages, 6 figures, 4 tables. Invited review to appear in Elsevier's Journal of High Energy Astrophysics dedicated issue "Swift: 10 years of discovery

    The Global Implications of the Hard X-ray Excess in Type 1 AGN

    Full text link
    Recent evidence for a strong 'hard excess' of flux at energies > 20 keV in some Suzaku observations of type 1 Active Galactic Nuclei (AGN) has motivated an exploratory study of the phenomenon in the local type 1 AGN population. We have selected all type 1 AGN in the Swift Burst Alert Telescope (BAT) 58-month catalog and cross-correlated them with the holdings of the Suzaku public archive. We find the hard excess phenomenon to be a ubiquitous property of type 1 AGN. Taken together, the spectral hardness and equivalent width of Fe K alpha emission are consistent with reprocessing by an ensemble of Compton-thick clouds that partially cover the continuum source. In the context of such a model, ~ 80 % of the sample has a hardness ratio consistent with > 50% covering of the continuum by low-ionization, Compton-thick gas. More detailed study of the three hardest X-ray spectra in our sample reveal a sharp Fe K absorption edge at ~ 7 keV in each of them, indicating that blurred reflection is not responsible for the very hard spectral forms. Simple considerations place the distribution of Compton-thick clouds at or within the optical broad line region.Comment: Accepted for publication in Ap

    The Galactic center X-ray transients AX J1745.6-2901 and GRS 1741-2853

    Full text link
    AX J1745.6-2901 and GRS 1741-2853 are two transient neutron star low-mass X-ray binaries that are located within ~10' from the Galactic center. Multi-year monitoring observations with the Swift/XRT has exposed several accretion outbursts from these objects. We report on their updated X-ray light curves and renewed activity that occurred in 2010-2013.Comment: 2 pages, 1 figure, 1 table. To appear in conference proceedings of IAU symposium 303 "The Galactic Center: Feeding and Feedback in a Normal Galactic Nucleus

    The Variable X-ray Spectrum of Markarian 766 - II. Time-Resolved Spectroscopy

    Full text link
    CONTEXT: The variable X-ray spectra of AGN systematically show steep power-law high states and hard-spectrum low states. The hard low state has previously been found to be a component with only weak variability. The origin of this component and the relative importance of effects such as absorption and relativistic blurring are currently not clear. AIMS: In a follow-up of previous principal components analysis, we aim to determine the relative importance of scattering and absorption effects on the time-varying X-ray spectrum of the narrow-line Seyfert 1 galaxy Mrk~766. METHODS: Time-resolved spectroscopy, slicing XMM and Suzaku data down to 25 ks elements, is used to investigate whether absorption or scattering components dominate the spectral variations in Mrk 766.Time-resolved spectroscopy confirms that spectral variability in Mrk 766 can be explained by either of two interpretations of principal components analysis. Detailed investigation confirm rapid changes in the relative strengths of scattered and direct emission or rapid changes in absorber covering fraction provide good explanations of most of the spectral variability. However, a strong correlation between the 6.97 keV absorption line and the primary continuum together with rapid opacity changes show that variations in a complex and multi-layered absorber, most likely a disk wind, are the dominant source of spectral variability in Mrk 76

    Improved transistor-controlled and commutated brushless DC motors for electric vehicle propulsion

    Get PDF
    The development, design, construction, and testing processes of two electronically (transistor) controlled and commutated permanent magnet brushless dc machine systems, for propulsion of electric vehicles are detailed. One machine system was designed and constructed using samarium cobalt for permanent magnets, which supply the rotor (field) excitation. Meanwhile, the other machine system was designed and constructed with strontium ferrite permanent magnets as the source of rotor (field) excitation. These machine systems were designed for continuous rated power output of 15 hp (11.2 kw), and a peak one minute rated power output of 35 hp (26.1 kw). Both power ratings are for a rated voltage of 115 volts dc, assuming a voltage drop in the source (battery) of about 5 volts. That is, an internal source voltage of 120 volts dc. Machine-power conditioner system computer-aided simulations were used extensively in the design process. These simulations relied heavily on the magnetic field analysis in these machines using the method of finite elements, as well as methods of modeling of the machine power conditioner system dynamic interaction. These simulation processes are detailed. Testing revealed that typical machine system efficiencies at 15 hp (11.2 kw) were about 88% and 84% for the samarium cobalt and strontium ferrite based machine systems, respectively. Both systems met the peak one minute rating of 35 hp

    X-ray variability analysis of a large series of XMM-Newton + NuSTAR observations of NGC 3227

    Get PDF
    We present a series of X-ray variability results from a long XMM-Newton + NuSTAR campaign on the bright, variable AGN NGC 3227. We present an analysis of the lightcurves, showing that the source displays typically softer-when-brighter behaviour, although also undergoes significant spectral hardening during one observation which we interpret as due to an occultation event by a cloud of absorbing gas. We spectrally decompose the data and show that the bulk of the variability is continuum-driven and, through rms variability analysis, strongly enhanced in the soft band. We show that the source largely conforms to linear rms-flux behaviour and we compute X-ray power spectra, detecting moderate evidence for a bend in the power spectrum, consistent with existing scaling relations. Additionally, we compute X-ray Fourier time lags using both the XMM-Newton and - through maximum-likelihood methods - NuSTAR data, revealing a strong low-frequency hard lag and evidence for a soft lag at higher frequencies, which we discuss in terms of reverberation models.Comment: Accepted for publication in MNRAS; 19 pages, 13 figures, 4 tables; minor typographical errors corrected and reference list update
    corecore