1,576 research outputs found

    Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading

    Get PDF
    Finite Element models are developed for the in-plane linear elastic constants of a family of honeycombs comprising arrays of cylinders connected by ligaments. Honeycombs having cylinders with 3, 4 and 6 ligaments attached to them are considered, with two possible configurations explored for each of the 3- (trichiral and anti-trichiral) and 4- (tetrachiral and anti-tetrachiral) connected systems. Honeycombs for each configuration have been manufactured using rapid prototyping and subsequently characterised for mechanical properties through in-plane uniaxial loading to verify the models. An interesting consequence of the family of 'chiral' honeycombs presented here is the ability to produce negative Poisson's ratio (auxetic) response. The deformation mechanisms responsible for auxetic functionality in such honeycombs are discussed

    Schema Normalization for Improving Schema Matching

    Get PDF
    Schema matching is the problem of finding relationships among concepts across heterogeneous data sources (heterogeneous in format and in structure). Starting from the \hidden meaning" associated to schema labels (i.e. class/attribute names) it is possible to discover relationships among the elements of different schemata. Lexical annotation (i.e. annotation w.r.t. a thesaurus/lexical resource) helps in associating a \u201cmeaning" to schema labels. However, accuracy of semi-automatic lexical annotation methods on real-world schemata suffers from the abundance of non-dictionary words such as compound nouns and word abbreviations.In this work, we address this problem by proposing a method to perform schema labels normalization which increases the number of comparable labels. Unlike other solutions, the method semi-automatically expands abbreviations and annotates compound terms, without a minimal manual effort. We empirically prove that our normalization method helps in the identification of similarities among schema elements of different data sources, thus improving schema matching accuracy

    Intrinsic Decoherence Dynamics in Smooth Hamiltonian Systems: Quantum-classical Correspondence

    Full text link
    A direct classical analog of the quantum dynamics of intrinsic decoherence in Hamiltonian systems, characterized by the time dependence of the linear entropy of the reduced density operator, is introduced. The similarities and differences between the classical and quantum decoherence dynamics of an initial quantum state are exposed using both analytical and computational results. In particular, the classicality of early-time intrinsic decoherence dynamics is explored analytically using a second-order perturbative treatment, and an interesting connection between decoherence rates and the stability nature of classical trajectories is revealed in a simple approximate classical theory of intrinsic decoherence dynamics. The results offer new insights into decoherence, dynamics of quantum entanglement, and quantum chaos.Comment: 12 pages, 7 figures, to appear in Physical Review

    Exact Solutions for Matter-Enhanced Neutrino Oscillations

    Get PDF
    The analogy between supersymmetric quantum mechanics and matter-enhanced neutrino oscillations is exploited to obtain exact solutions for a class of electron density profiles. This integrability condition is analogous to the shape-invariance in supersymmetric quantum mechanics. This method seems to be the most direct way to obtain the exact survival probabilities for a number of density profiles of interest, such as linear and exponential density profiles. The resulting neutrino amplitudes can also be utilized as comparison amplitudes for the uniform semiclassical treatment of neutrino propagation in arbitrary electron density profiles.Comment: Submitted to Physical Review D. Latex file, 8 pages. This paper is also available at http://nucth.physics.wisc.edu/preprints

    Simultaneous fault detection algorithm for grid-connected photovoltaic plants

    Get PDF
    In this work, the authors present a new algorithm for detecting faults in grid-connected photovoltaic (GCPV) plant. There are few instances of statistical tools being deployed in the analysis of photovoltaic (PV) measured data. The main focus of this study is, therefore, to outline a PV fault detection algorithm that can diagnose faults on the DC side of the examined GCPV system based on the t-test statistical analysis method. For a given set of operational conditions, solar irradiance and module temperature, a number of attributes such as voltage and power ratio of the PV strings are measured using virtual instrumentation (VI) LabVIEW software. The results obtained indicate that the fault detection algorithm can detect accurately different types of faults such as, faulty PV module, faulty PV String, faulty Bypass diode and faulty maximum power point tracking unit. The proposed PV fault detection algorithm has been validated using 1.98 kWp PV plant installed at the University of Huddersfield, UK

    Finding Faint Intermediate-mass Black Holes in the Radio Band

    Full text link
    We discuss the prospects for detecting faint intermediate-mass black holes, such as those predicted to exist in the cores of globular clusters and dwarf spheroidal galaxies. We briefly summarize the difficulties of stellar dynamical searches, then show that recently discovered relations between black hole mass, X-ray luminosity and radio luminosity imply that in most cases, these black holes should be more easily detected in the radio than in the X-rays. Finally, we show upper limits from some radio observations of globular clusters, and discuss the possibility that the radio source in the core of the Ursa Minor dwarf spheroidal galaxy might be a 10,000100,000M\sim 10,000-100,000 M_\odot black hole.Comment: 10 pages, no figures, to appear in From X-ray Binaries to Quasars: Black Hole Accretion on All Mass Scales, ed. T. J. Maccarone, R. P. Fender, and L. C. Ho (Dordrecht: Kluwer

    The nucleon's strange electromagnetic and scalar matrix elements

    Full text link
    Quenched lattice QCD simulations and quenched chiral perturbation theory are used together for this study of strangeness in the nucleon. Dependences of the matrix elements on strange quark mass, valence quark mass and momentum transfer are discussed in both the lattice and chiral frameworks. The combined results of this study are in good agreement with existing experimental data and predictions are made for upcoming experiments. Possible future refinements of the theoretical method are suggested.Comment: 24 pages, 9 figure

    Meaning, Truth, and Physics

    Get PDF
    A physical theory is a partially interpreted axiomatic formal system (L,S), where L is a formal language with some logical, mathematical and physical axioms, and with some derivation rules, and the semantics S is a relationship between the formulas of L and some states of affairs in the physical world. In our ordinary discourse, the formal system L is regarded as an abstract object or structure, the semantics S as something which involves the mental/conceptual realm. This view is of course incompatible with physicalism. How can physical theory be accommodated in a purely physical ontology? The aim of this paper is to outline an account for meaning and truth of physical theory, within the philosophical framework spanned by three doctrines: physicalism, empiricism, and the formalist philosophy of mathematics

    Accuracy and Stability of Computing High-Order Derivatives of Analytic Functions by Cauchy Integrals

    Full text link
    High-order derivatives of analytic functions are expressible as Cauchy integrals over circular contours, which can very effectively be approximated, e.g., by trapezoidal sums. Whereas analytically each radius r up to the radius of convergence is equal, numerical stability strongly depends on r. We give a comprehensive study of this effect; in particular we show that there is a unique radius that minimizes the loss of accuracy caused by round-off errors. For large classes of functions, though not for all, this radius actually gives about full accuracy; a remarkable fact that we explain by the theory of Hardy spaces, by the Wiman-Valiron and Levin-Pfluger theory of entire functions, and by the saddle-point method of asymptotic analysis. Many examples and non-trivial applications are discussed in detail.Comment: Version 4 has some references and a discussion of other quadrature rules added; 57 pages, 7 figures, 6 tables; to appear in Found. Comput. Mat

    Neutrinoless double-beta decay and seesaw mechanism

    Full text link
    From the standard seesaw mechanism of neutrino mass generation, which is based on the assumption that the lepton number is violated at a large (~10exp(+15) GeV) scale, follows that the neutrinoless double-beta decay is ruled by the Majorana neutrino mass mechanism. Within this notion, for the inverted neutrino-mass hierarchy we derive allowed ranges of half-lives of the neutrinoless double-beta decay for nuclei of experimental interest with different sets of nuclear matrix elements. The present-day results of the calculation of the neutrinoless double-beta decay nuclear matrix elements are briefly discussed. We argue that if neutrinoless double-beta decay will be observed in future experiments sensitive to the effective Majorana mass in the inverted mass hierarchy region, a comparison of the derived ranges with measured half-lives will allow us to probe the standard seesaw mechanism assuming that future cosmological data will establish the sum of neutrino masses to be about 0.2 eV.Comment: Some changes in sections I, II, IV, and V; two new figures; additional reference
    corecore