43,899 research outputs found

    Self-consistent approach for the quantum confined Stark effect in shallow quantum wells

    Full text link
    A computationally efficient, self-consistent complex scaling approach to calculating characteristics of excitons in an external electric field in quantum wells is introduced. The method allows one to extract the resonance position as well as the field-induced broadening for the exciton resonance. For the case of strong confinement the trial function is represented in factorized form. The corresponding coupled self-consistent equations, which include the effective complex potentials, are obtained. The method is applied to the shallow quantum well. It is shown that in this case the real part of the effective exciton potential is insensitive to changes of external electric field up to the ionization threshold, while the imaginary part has non-analytical field dependence and small for moderate electric fields. This allows one to express the exciton quasi-energy at some field through the renormalized expression for the zero-field bound state.Comment: 13 pages, RevTeX4, 6 figure

    Radio faint AGN: a tale of two populations

    Get PDF
    We study the Extended Chandra Deep Field South (E-CDFS) Very Large Array sample, which reaches a flux density limit at 1.4 GHz of 32.5 microJy at the field centre and redshift ~ 4, and covers ~ 0.3 deg^2. Number counts are presented for the whole sample while the evolutionary properties and luminosity functions are derived for active galactic nuclei (AGN). The faint radio sky contains two totally distinct AGN populations, characterised by very different evolutions, luminosity functions, and Eddington ratios: radio-quiet (RQ)/radiative-mode, and radio-loud/jet-mode AGN. The radio power of RQ AGN evolves ~ (1+z)^2.5, similarly to star-forming galaxies, while the number density of radio-loud ones has a peak at ~ 0.5 and then declines at higher redshifts. The number density of radio-selected RQ AGN is consistent with that of X-ray selected AGN, which shows that we are sampling the same population. The unbiased fraction of radiative-mode RL AGN, derived from our own and previously published data, is a strong function of radio power, decreasing from ~ 0.5 at P_1.4GHz ~ 10^24 W/Hz to ~ 0.04$ at P_1.4GHz ~ 10^22 W/Hz. Thanks to our enlarged sample, which now includes ~ 700 radio sources, we also confirm and strengthen our previous results on the source population of the faint radio sky: star-forming galaxies start to dominate the radio sky only below ~ 0.1 mJy, which is also where radio-quiet AGN overtake radio-loud ones.Comment: 19 pages, 13 figures, accepted for publication in MNRA

    Diffraction and boundary conditions in semi-classical open billiards

    Full text link
    The conductance through open quantum dots or quantum billiards shows fluctuations, that can be explained as interference between waves following different paths between the leads of the billiard. We examine such systems by the use of a semi-classical Green's functions. In this paper we examine how the choice of boundary conditions at the lead mouths affect the diffraction. We derive a new formula for the S-matrix element. Finally we compare semi-classical simulations to quantum mechanical ones, and show that this new formula yield superior results.Comment: 7 pages, 4 figure

    Finite element analysis of wrinkling membranes

    Get PDF
    The development of a nonlinear numerical algorithm for the analysis of stresses and displacements in partly wrinkled flat membranes, and its implementation on the SAP VII finite-element code are described. A comparison of numerical results with exact solutions of two benchmark problems reveals excellent agreement, with good convergence of the required iterative procedure. An exact solution of a problem involving axisymmetric deformations of a partly wrinkled shallow curved membrane is also reported

    Finite element analysis of wrinkling membranes

    Get PDF
    The finite element analysis of wrinkling membranes was investigated. The determination of stresses and deformations within large partly wrinkled membrane surfaces is a problem of significant technical interest in such areas as conceptual design and analysis of ultra lightweight spacecraft structures. A closed-form solution to an axisymmetric problem involving partial wrinkling of an inflated shallow membrane was obtained. In particular, a membrane in the shape of a sperical annulus was considered. The outer edge of the annulus was assumed to be fixed so that no displacements occur along the outer perimeter. The inner edge is assumed to be clamped to a rigid movable plug. Solutions for the complete stress, strain, and displacement fields under the assumption of inextensional material behavior are presented for the case of pure torsional loads applied to the plug, and for the case of pure axial loads applied to the plug
    corecore