12,584 research outputs found

    Only a Rite

    Get PDF

    The Physics Case for the New Muon (g-2) Experiment

    Full text link
    This White Paper briefly reviews the present status of the muon (g-2) experiment and the physics motivation for a new effort. The present comparison between experiment and theory indicates a tantalizing 3.4σ3.4 \sigma deviation. An improvement in precision on this comparison by a factor of 2--with the central value remaining unchanged--will exceed the ``discovery'' threshold, with a sensitivity above 6σ6 \sigma. The 2.5-fold reduction improvement goal of the new Brookhaven E969 experiment, along with continued steady reduction of the standard model theory uncertainty, will achieve this more definitive test. Already, the (g-2) result is arguably the most compelling indicator of physics beyond the standard model and, at the very least, it represents a major constraint for speculative new theories such as supersymmetry or extra dimensions. In this report, we summarize the present experimental status and provide an up-to-date accounting of the standard model theory, including the expectations for improvement in the hadronic contributions, which dominate the overall uncertainty. Our primary focus is on the physics case that motivates improved experimental and theoretical efforts. Accordingly, we give examples of specific new-physics implications in the context of direct searches at the LHC as well as general arguments about the role of an improved (g-2) measurement. A brief summary of the plans for an upgraded effort complete the report.Comment: 18 pages, 7 figure

    Development and Testing of a Sorbent-Based Atmosphere Revitalization System for the Crew Exploration Vehicle 2007/2008

    Get PDF
    The design of a Vacuum-Swing Adsorption (VSA) system to remove metabolic water and metabolic carbon dioxide from the Orion Crew Exploration Vehicle (CEV) atmosphere is presented. The approach for Orion is a VSA system that removes not only 100 percent of the metabolic CO2 from the atmosphere, but also 100% of the metabolic water as well, a technology approach that has not been used in previous spacecraft life support systems. The design and development of the Sorbent Based Atmosphere Regeneration (SBAR) system, including test articles, a facility test stand, and full-scale testing in late 2007 and early 2008 is discussed
    • …
    corecore