1,614 research outputs found

    Fault Detection and Diagnosis in Air Conditioners and Refrigerators

    Get PDF
    A fault detection and diagnosis (FDD) method was used to detect and diagnose faults on both a refrigerator and an air conditioner during normal cycling operation. The objective of the method is to identify a set of sensors that can detect faults reliably before they severely hinder system performance. Unlike other methods, this one depends on the accuracy of a number of small, on-line linear models, each of which is valid over a limited range of operating conditions. To detect N faults, N sensors are needed. Using M>N sensors can further reduce the risk of false positives. For both the refrigerator and air conditioner systems, about 1000 combinations of candidate sensor locations were examined. Through inspection of matrix condition numbers and each sensor's contribution to fault detection calculation, the highest quality sets of sensors were identified. The issue of detecting simultaneous multiple faults was also addressed, with varying success. Fault detection was verified using both model simulations and experimental data. The results were similar, although in practice only one of the two would probably be used. Both load-type faults (such as door gasket leaks) and system faults were simulated on the refrigerator. It was found that system faults were generally more easily detectable than load faults. Refrigerator experiments were performed on a typical household refrigerator because it was readily available in a laboratory, but the results of this project may be more immediately useful on larger commercial, industrial or transport refrigeration systems. Air conditioner experiments were performed on a 3-ton split system. Again, the economic benefits of this type of fault detection scheme may also be more feasible for larger field-assembled systems.Air Conditioning and Refrigeration Project 8

    Letter from Charles W. Miller to James B. Finley

    Get PDF
    Rev. Charles W. Miller (North Indiana Conference), informs Finley that the second quarterly conference for Richmond Circuit will be held in two weeks -- December 15 & 16. Miller invites Finley to attend. He would be happy to host Finley at his home, offering Methodist Preachers fare for meals and a Prophets room which contains a fireplace. Abstract Number - 454https://digitalcommons.owu.edu/finley-letters/1652/thumbnail.jp

    MARKETING OF COTTON FIBER IN THE PRESENCE OF YIELD AND PRICE RISK

    Get PDF
    An expected utility model and a chance constrained linear programming model were used to analyze four marketing strategies and seven crop insurance alternatives in cotton marketing in Georgia. The results obtained suggest that the existing marketing tools and insurance alternatives can be used successfully as a substitute for government support.Demand and Price Analysis, Marketing, Risk and Uncertainty,

    Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading

    Get PDF
    Finite Element models are developed for the in-plane linear elastic constants of a family of honeycombs comprising arrays of cylinders connected by ligaments. Honeycombs having cylinders with 3, 4 and 6 ligaments attached to them are considered, with two possible configurations explored for each of the 3- (trichiral and anti-trichiral) and 4- (tetrachiral and anti-tetrachiral) connected systems. Honeycombs for each configuration have been manufactured using rapid prototyping and subsequently characterised for mechanical properties through in-plane uniaxial loading to verify the models. An interesting consequence of the family of 'chiral' honeycombs presented here is the ability to produce negative Poisson's ratio (auxetic) response. The deformation mechanisms responsible for auxetic functionality in such honeycombs are discussed

    Imaging atlas for eligibility and on-study safety of potential knee adverse events in anti-NGF studies (Part 1)

    Get PDF
    SummaryMonoclonal antibodies that bind and inhibit nerve growth factor (NGF) have demonstrated both, good analgesic efficacy and improvement in function in patients with osteoarthritis (OA). Despite initial promising data, trials in OA had been suspended by the Federal Food and Drug Administration (FDA) due to concerns over accelerated rates of OA progression. Imaging will play a crucial role in future clinical trials to define eligibility of potential participants and to monitor safety during the course of these studies. This will require baseline and frequent follow-up radiographs of both, the index joints and other large weight bearing joints to identify subjects at risk prior inclusion and on study so treatment can be discontinued.This imaging overview in the form of an atlas describes and illustrates potential exclusionary joint imaging findings at eligibility and potential adverse joint events on radiography and magnetic resonance imaging (MRI) in studies investigating a-NGF compounds. The overarching goal of this atlas is to facilitate trial design and to promote a common language and understanding between potential expert readers. This first section of the atlas will focus on knee joint specific findings that are relevant to a-NGF studies

    Anharmonic parametric excitation in optical lattices

    Get PDF
    We study both experimentally and theoretically the losses induced by parametric excitation in far-off-resonance optical lattices. The atoms confined in a 1D sinusoidal lattice present an excitation spectrum and dynamics substantially different from those expected for a harmonic potential. We develop a model based on the actual atomic Hamiltonian in the lattice and we introduce semiempirically a broadening of the width of lattice energy bands which can physically arise from inhomogeneities and fluctuations of the lattice, and also from atomic collisions. The position and strength of the parametric resonances and the evolution of the number of trapped atoms are satisfactorily described by our model.Comment: 7 pages, 5 figure

    Enhancing energy absorption in quantum dot solar cells via periodic light-trapping microstructures

    Get PDF
    Colloidal quantum dot (CQD) solar cells prove to be promising devices for optoelectronic applications due to their tunable absorption range, deep infrared absorption capabilities, and straightforward processability. However, there remains a need to further enhance their device performance - particularly when one has to adhere to strict physical limitations on their physical structure. Here we present a three-dimensional numerical model of CQD solar cells in COMSOL Multiphysics based on the finite element method. With this model we have simulated the optical characteristics of several CQD solar cells across varying photonic structures and physical parameters to investigate how distinct photonic structures may enhance the light absorption and current output of CQD solar cells using identical physical parameters. Of the many cells simulated, one notable model increased the predicted current in the active layer PbS by 69.33% as compared to a flat solar cell with identical physical parameters, and produced a current of 24.18 mA cm-2 by implementing a cross-shaped photonic structure built on top of a flat substrate of glass and ITO. This cross-shaped model serves as a key example of how unique photonic structures can be implemented to further enhance light absorption

    Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities

    Get PDF
    We analyze the signal processing required for the optimal detection of a stochastic background of gravitational radiation using laser interferometric detectors. Starting with basic assumptions about the statistical properties of a stochastic gravity-wave background, we derive expressions for the optimal filter function and signal-to-noise ratio for the cross-correlation of the outputs of two gravity-wave detectors. Sensitivity levels required for detection are then calculated. Issues related to: (i) calculating the signal-to-noise ratio for arbitrarily large stochastic backgrounds, (ii) performing the data analysis in the presence of nonstationary detector noise, (iii) combining data from multiple detector pairs to increase the sensitivity of a stochastic background search, (iv) correlating the outputs of 4 or more detectors, and (v) allowing for the possibility of correlated noise in the outputs of two detectors are discussed. We briefly describe a computer simulation which mimics the generation and detection of a simulated stochastic gravity-wave signal in the presence of simulated detector noise. Numerous graphs and tables of numerical data for the five major interferometers (LIGO-WA, LIGO-LA, VIRGO, GEO-600, and TAMA-300) are also given. The treatment given in this paper should be accessible to both theorists involved in data analysis and experimentalists involved in detector design and data acquisition.Comment: 81 pages, 30 postscript figures, REVTE
    corecore