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Abstract 

A fault detection and diagnosis (FDD) method was used to detect and diagnose 

faults on both a refrigerator and an air conditioner during normal cycling operation. The 

objective of the method is to identify a set of sensors that can detect faults reliably before 

they severely hinder system performance. Unlike other methods, this one depends on the 

accuracy of a number of small, on-line linear models, each of which is valid over a 

limited range of operating conditions. 

To detect N faults, N sensors are needed. Using M>N sensors can further reduce 

the risk of false positives. For both the refrigerator and air conditioner systems, about 

1000 combinations of candidate sensor locations were examined. Through inspection of 

matrix condition numbers and each sensor's contribution to fault detection calculation, the 

highest quality sets of sensors were identified. The issue of detecting simultaneous 

multiple faults was also addressed, with varying success. 

Fault detection was verified using both model simulations and experimental data. 

The results were similar, although in practice only one of the two would probably be 

used. Both load-type faults (such as door gasket leaks) and system faults were simulated 

on the refrigerator. It was found that system faults were generally more easily detectable 

than load faults. 

Refrigerator experiments were performed on a typical household refrigerator 

because it was readily available in a laboratory, but the results of this project may be 

more immediately useful on larger commercial, industrial or transport refrigeration 

systems. Air conditioner experiments were performed on a 3-ton split system. Again, the 

economic benefits of this type of fault detection scheme may also be more feasible for 

larger field-assembled systems. 
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Chapter 1 

Introduction 

1.1 Introduction 

This study was motivated by the desire for an inexpensive, reliable method for 

detecting and diagnosing faults in refrigeration and air conditioning systems during 

normal cycling operation. The two systems are similar in that they are both vapor

compression cycles whose purpose is to lower the air temperature of a given enclosure. 

A major benefit of a fault diagnosis system would be the fact that many faults could be 

detected and repaired before any equipment damage would occur. This project will 

exploit the fact that these systems exhibit a highly repeatable quasi-steady condition near 

the end of their operating cycles. 

The method presented here makes the assumption that whatever systems it is 

applied to are well-instrumented and make use of microprocessors. Some parameters 

require precise control and measurement. It is expected that a sophisticated FDD method 

would be most useful on high-quality components, in applications where benefits of early 

detection are greatest (e.g. in large chiller plants or in commercial, industrial, or transport 

refrigeration systems where faults may cause loss of valuable product). Although the 

method would be most cost-effective for these types of systems, experiments were 

performed on (well-instrumented) common household equipment because it was readily 

available. The method is general enough to be applied to other HV AC and/or 

refrigeration systems. 

1.2 Objectives 

The specific objectives of this project are as follows: 

1) apply a model based fault detection and diagnosis method to extract as much 
information as possible from a small set of inexpensive sensors; 

2) demonstrate through numerical simulation that this diagnostic method can accurately 
identify "simulated faults" (alone and in combination) and also minimize the chance 
of false positive diagnoses; 

3) modify existing well-instrumented refrigerators and air conditioners to simulate these 
same faults; and 
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4) demonstrate the viability of this diagnostic method over a wide range of test 
conditions. 

These objectives will be addressed in detail throughout the remainder of this 

report. Chapter 2 will introduce the fault detection and diagnosis (FDD) technique that 

this study proposes and will describe faults to be detected and sensors that may be used. 

Chapter 3 will investigate methods of choosing the best sensors for fault detection, in the 

interest of minimizing the number of required sensors. Finally, Chapter 4 will assess the 

quality ofthis FDD technique through both numerical and experimental results. 

1.3 Literature review 

A recent application of diagnostic techniques to stationary vapor compression air 

conditioners is reported in Rossi and Braun (1997) and was evaluated by Breuker and 

Braun (October 1998). Rossi and Braun proposed a method to detect and distinguish 

among five different faults in an air conditioner: refrigerant leakage, liquid line 

restriction, leaky compressor valves, fouled condenser coil, and dirty evaporator filter. 

Their method requires at most 10 measurements; nine temperatures and one humidity 

measurement. Two of the temperature measurements, the condenser and evaporator inlet 

(outdoor and indoor, respectively) air temperatures, along with evaporator inlet humidity 

define the driving states of the system. They define the system's operating condition. 

Three sensors are therefore needed to define normal operation. This leaves 7 sensors to 

detect 5 faults. The driving states are measured and used by a steady-state model to 

predict the other seven system temperatures. Fault detection is then based on differences 

(residuals) between those predicted temperatures and their measured values. The seven 

residuals define a "detection vector" in 7-D space. Rossi and Braun use a large nonlinear 

physical model to predict system performance, but Rossi (1995) determined that the size 

and iterative nature of the model would be "too numerically burdensome" for field 

applications. Therefore they used that model's output to develop a smaller empirical 

"black box" type model to predict the system variables of interest based on the measured 

driving states. 

Diagnosis is performed by a rule-based diagnostic classifier that identifies a 

unique signature associated with each fault, meaning that each different fault is 
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represented by a unique detection vector direction in 7-D space. If the magnitude of the 

detection vector is significantly larger than measurement uncertainties, and if it points in 

one of the five predetermined fault vector directions, then that particular fault is 

statistically detectable and classifiable. Rossi and Braun do not address the possibility of 

multiple faults existing simultaneously. In a later publication, Breuker and Braun used 

this method proposed by Rossi and Braun to detect the same five faults, but they reduced 

the number of sensors needed to two inputs (specifying the operating condition) and five 

outputs (to detect five faults). They concluded that reasonable accuracy is maintained as 

long as humidity is retained as one of the driving state sensors. 

Other researchers have addressed this problem also. Stylianou and Nikanpour 

(1996) diagnosed faults on a reciprocating chiller. They divided the chiller's operation 

into three distinct modes: Off-cycle, start-up, and steady-state operation. They used 

pattern-recognition techniques to diagnose faults that were observable during at least one 

of the three modes of operation. For example, sensor drift was detected during the off

cycle, inherently transient refrigerant flow control faults (ex. compressor floodback) were 

detected during start-up, and evaporator and condenser fouling, refrigerant leak, and flow 

restrictions were detected during steady-state operation. At steady-state, performance 

quality was calculated using expected COP as a function of condenser and evaporator 

temperatures. If COP was below its predicted value, performance was defined as faulty 

and six temperatures and two pressures were estimated using a linear regression model 

(based on training data), then residuals were calculated and matched using a rule-based 

method similar to that used by Rossi and Braun. 

Grimmelius, et al. (1995) diagnosed faults affecting a compression refrigeration 

plant. They considered six faults and monitored 20 variables, although 9 of those showed 

no changes upon fault induction and could probably be discarded. They used a regression 

model based on previously measured data to predict system behavior and the differences 

between measured and expected sensor readings to compute residuals. Those residuals 

were then compared to a rule-based matrix similar to that used by both Rossi and Braun 

and Stylianou and Nikanpour. On-line FDD is accomplished by comparing sensor 

measurements to the rule-based matrix and assigning a score between 0 (no fault) and 1 

(probable fault) to each possible failure mode based on how closely the sensor 
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measurements match each fault signature. In a later publication, Grimmelius, et al. 

(1999) state that a detailed refrigeration plant model is being developed (from first 

principles) for the express purpose of simulating faults. They state that most existing 

models cannot be used for FDD because faults cause off-design behavior, which is 

difficult to validate with manufacturer's data. 

Wagner and Shoureshi (1992) review both a limit/trend checking and an 

innovation-based detection scheme to detect five faults. The limit and trend checking 

scheme is a model-free approach based, as the name implies, on monitoring system 

outputs and verifying that they remain within acceptable ranges. The ranges are typically 

chosen experimentally, and must be narrow enough to avoid major component damage 

but wide enough to avoid false alarms. The innovation-based (or residual-based) 

detection scheme predicts sensor readings using a simplified model based on 

thermodynamiclheat transfer principles and empirical data. The model operates on-line, 

and failures are indicated when the sum of normalized square innovations is larger than a 

predetermined threshold. 

Researchers have recently tested FDD techniques on air-handling units as well. 

Ngo and Dexter (1999) compare measured data (from the cooling-coil subsystem of the 

unit) to 6 different generic fuzzy reference models obtained from simulation data. One 

model represents fault-free operation, the other five represent faults such as valve leaking, 

valve sticking, and fouling. They claim that due to sensor bias only large faults can be 

successfully detected in practice. Kiirki and Katjalainen (1999) stipulate that the amount 

of instrumentation on the air-handling unit must not increase (no extra hardware cost). 

They do not report specific results, but review FDD methods such as monitoring heat 

recovery through the monitoring of exhaust air temperature, monitoring powers, process 

characteristic curves, and fault-symptom trees. Katipamula, et al. (1999) employ 

diagnostics based on rules derived from engineering models of proper and improper air

handler performance. The rules are implemented as a decision tree structure. They 

exhibit promising results from a prototype system in order to demonstrate its potential. 

The proposed approach is most similar to that of Rossi and Braun, but 

theoretically it is more powerful. Both approaches depend on known (measured) driving 

states and both compare predicted states to sensor measurements. Their steady-state 
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model is constructed with empirical data, whereas our refrigerator and air conditioner 

models are large computer simulation models. Our underlying FDD tool is a very small 

linear model that requires only as many state measurements as faults to be detected. 

Unlike other methods reviewed above, our method contributes an algorithm for selecting 

the best sensor locations based solely on a mathematical analysis of their contributions to 

detection accuracy. 

In terms similar to those used by Rossi and Braun, our algorithm ensures that the 

sensors chosen are those which ensure that the unique directions of the detection vectors 

are as close to orthogonal as possible. This tendency is valuable because if two fault 

vectors were nearly collinear, distinguishing between those two faults would be difficult. 

Our method also allows for the addition of extra sensors for extra accuracy. Those extra 

sensors may also be chosen analytically using the same sensor choice algorithm. Our 

method also proposes a normalization routine that may be used to determine the optimal 

time to alert a user of a particular fault (when system performance is sufficiently 

degraded). That is important because in some cases a fault may be statistically detectable 

and classifiable, but not severe enough to warrant the repair cost. At the heart of this 

method is a dependence on unique fault signatures, as in other methods, but sensors and 

alarm levels are chosen more rigorously. The possibility of diagnosing multiple faults 

occurring at the same time is also considered here. In theory, the mathematical method 

presented here will detect and diagnose multiple faults as effectively as single faults. 
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Chapter 2 

Fault Detection and Diagnosis 

2.1 FDD method 

Data from experiments or simulation analyses can be used to formulate simple 

linearized vector equation system models of the following form: 

where 

~x=J~k [2.1] 

~x is the vector of M residuals under a particular set of operating conditions (e.g. 
deviation between measured and expected temperatures), where M = number of 
sensors used, 
~k is the vector of changes in N process parameters (e.g. difference between 
design and actual air flow rate), where N = number of faults accounted for, and 
J is a matrix of partial derivatives (of Xm with respect to kn, called a Jacobian 
matrix) which models the linearized relationship between the residuals and the 
parameter changes at a particular set of operating conditions. 

Ifthe Jacobian matrix J is available for a given set of operating conditions, the 

changes in process parameters can be computed from: 

[2.2] 

That is, degradations of physical system characteristics k can be calculated and detected 

directly from measurements of monitored operating variables x, provided one knows the 

inverse of the Jacobian matrix. That matrix could be obtained from a system and 

programmed into a system's controller. Of course, such a linearized model only 

produces accurate results over a limited range of operating conditions. Results have 

shown, though, that over the relatively small ranges of parameter degradation considered 

here, a small linear model provides reasonable accuracy. See Appendix B for further 

discussion ofthis linearity assumption and other details of Jacobian matrix construction. 

The remainder of this study is dedicated to testing the viability of this proposed 

FDD method. It could be tested in numerous ways, including a purely empirical test or a 

test consisting only of model simulation data. The test method chosen here consists of 
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both simulation and experimental results. Model data is used to choose appropriate 

sensor sets and to deduce uncertainty ranges for fault detection using those sets, as well 

as to investigate Jacobian robustness, linearity, etc. Experimental data was then used 

mainly as a supplement, to verify whether model results are realistic and whether an 

empirical test would give similar results. 

2.2 Simulated faults and candidate sensor locations 

This section describes the faults that were simulated on a refrigeration system and 

an air conditioning system. The most obvious difference is the fact that the refrigerator 

has three reservoirs (two compartments and an outdoor room) while the air conditioner 

has only two (indoor and outdoor). This means that the air conditioning system is 

simpler to analyze, mainly because it doesn't utilize a damper to divide the air flowing 

over the evaporator. Refrigerator experiments were performed on a typical household 

refrigerator because it was readily available in a laboratory, but the results of this project 

may be more immediately useful on larger commercial, industrial or transport 

refrigeration systems. Air conditioner experiments were performed on a 3-ton split 

system. Again, the economic benefits of this type of fault detection scheme may also be 

more feasible for larger field-assembled systems. 

In order to simulate the refrigerator and air conditioner systems, large nonlinear 

computer simulation models were used first to identify candidate sensor locations. 

Model runs were performed so that all values of potentially measurable variables are 

known for each system's base case (no faults present) and for all of their fault cases. By 

separately comparing each variable value seen in each fault run to the value of that same 

variable in the base case run, all possible changes in sensor readings (8Xm) are now 

known. Woodall and Bullard (1996) list all the variables used by the refrigerator 

simulation model. Bridges, et al. (1995) list all the variables used by the alc simulation 

model. 

Each model makes use of more than 100 variables, but only a smaller subset of 

them may be realistically measured in a production unit with reasonable ease and cost. 

From the list of easily measurable variables, a list of candidate sensor locations was 

compiled by eliminating all of the Xm values that did not change significantly upon fault 
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induction. A "significant change" is defined as a change in a variable that is greater than 

that sensor's measurement uncertainty, to distinguish signal from noise. Measurement 

uncertainty (2cr) for sensors (regardless of whether they were used on the refrigerator or 

air conditioner) was assumed to be 0.5% for compressor RunTime fraction, 4.0 psia for 

pressure, 1.0°F for temperature, and 4.0 W for power. 

2.2.1 Refrigerator fault simulation 

The fault detection and diagnosis method relies on readings from a number of 

sensors at various locations throughout the refrigerator system refrigerant and air loops. 

Figure 2.1 below is a schematic diagram of a typical refrigerator loop. 

Liquid Line 

CapTube 
Suction Line 

evap air 

Figure 2.1 Schematic diagram of refrigerator model setup 

A total of 13 locations were considered as candidates for sensor locations, based 

on inspection of simulation model results, and are shown in Figure 2.1. Table 2.1 below 

summarizes Figure 2.1 and lists the candidate sensor locations. The experimental test 
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unit used for this project was instrumented with all of the sensors listed in Table 2.1, with 

the exception of RunTime and evaporator air damper position. 

Table 2.1 Candidate refrigerator sensor locations 

Temperatures Others 
compressor suction evaporator fan outlet discharge pressure 

compressor discharge condenser outlet compressor run time 
compressor shell evaporator inlet system power 

condenser fan outlet evaporator outlet evaporator air damper position 
liquid line outlet 

Using compartment air heaters, the experimental unit was forced to run in the 

"on" cycle 100% of the time with a fixed damper position. Compartment temperatures 

were held constant, and heater outputs were used to make an "offline" calculation of 

effective RunTime and damper position. 

Eight refrigerator faults were simulated using the model. Each separate fault was 

assumed to be caused by a change in some fault-specific operation parameter kn• The 

steady-state computer model simulations were performed as follows: all eight faults were 

simulated as in a real refrigerator for which cabinet loads were known. The resulting 

values of RunTime «100%) and damper position required to match capacity to load were 

computed as variables. The total yearly energy use was then set to increase by an amount 

L\Ecrit (arbitrarily chosen as 5%) over the base case while a single parameter kn was 

allowed to vary. With these results it can be seen exactly how much a parameter must be 

degraded (while all other parameters remain unchanged) before it causes the system to 

use 5% more energy. By performing this type of simulation for all eight faults, eight 

different L\kn values are then known and are "equivalent," in that they all degrade the 

system's performance equally. Table 2.2 shows the eight simulated faults and their 

"critical" parameter changes. 

The experimental facility differs from an actual operational system as described 

above, however. Therefore after the first eight model runs were completed, eight more 

runs were done holding RT equal to 100% and the evaporator damper position equal to 

0.94 (the experimental baseline value found by Kelman and Bullard (1998)) while 
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compartment heater powers were allowed to vary. This second set of eight runs 

simulates the steady-state experiments conducted in the test facility. All eight faults were 

simulated using the magnitudes of parameter degradation (~kn) shown in Table 2.2. 

Most model analysis was done at the following conditions: ambient temperature = 75°F, 

freezer temperature = 5°F, fresh food compartment temperature = 45°F. This procedure 

Table 2.2 Refrigerator faults simulated 

Fault Simulated Parameter Varied % Change 
clogged capillary tube capillary tube exit area -16% 

worn compressor compressor capacity scaling factor -8% 
low motor efficiency compressor power map scaling factor +6% 
frosted evaporator volumetric air flow rate -20% 
fouled condenser air-side heat transfer coefficient -21% 

reduced condenser airflow volumetric air flow rate -50% 
freezer gasket leak freezer compartment UA coefficient +7% 

fresh food gasket leak fresh food compartment UA coefficient +20% 

allows the results of these model simulations to be compared meaningfully to 

experimental sensor readings. Our choice of critical parameter values differs only in 

detail from Rossi and Braun, who measured fault magnitudes based on their level of 

detectability instead of selecting equivalent magnitudes. Our approach was designed to 

be generalized to the case of multiple faults as well as to avoid selecting potentially 

costly sensor locations that would not be particularly useful. 

The parameters listed in Table 2.2 may be changed easily within the simulation 

model, but experimentally the faults are not as easy to simulate. In the laboratory it is 

often difficult to introduce a fault having exactly the target magnitude. This and other 

experimental issues are addressed in Appendix A. 

2.2.2 Air conditioner fault simulation 

A similar list of candidate sensor locations was compiled from air conditioner 

simulation runs. Figure 2.2 is a schematic diagram of a typical air conditioner loop. A 

total of 12 locations were considered as candidates for sensor locations, based on 

inspection of simulation model results, and are shown in Figure 2.2. The experimental 
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test unit used for this project was instrumented with all of the indicated sensors, with the 

exception of liquid line outlet temperature (directly upstream of the TXV). 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Wrano~ 

· .... . . . . . . · .... . . .... . · ... . 

Figure 2.2 Schematic diagram of air conditioner model setup 

Table 2.3 summarizes Figure 2.2 and lists the candidate sensor locations. 
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Table 2.3 Candidate ale sensor locations 

Temperatures Others 
compressor suction evaporator fan outlet discharge pressure 

compressor discharge condenser outlet compressor suction pressure 
compressor shell evaporator inlet compressor power 

condenser fan outlet evaporator outlet 
liquid line outlet 

Six air conditioner faults were simulated. Model runs were performed in a 

manner similar to the refrigerator simulations described in Section 2.2.1. Most 

simulation analysis was done at the following conditions: outdoor temperature = 95°F, 

indoor temperature = 80°F, indoor relative humidity = 50%. Unlike the case of a 

refrigerator compartment where cooling loads are known, they are typically unknown and 

highly variable for a building. Therefore both the simulation and experiments were 

conducted at steady state, so RunTime is not available as a candidate sensor location. 

Indoor and outdoor temperatures and indoor humidity were held constant through the use 

of heaters and steam addition. Instead of specifying total yearly energy use as the critical 

performance variable, COP was set to decrease by an amount ~COPcrit (again, arbitrarily 

chosen as 5%) over the base case while a single parameter kn was allowed to vary. By 

performing this type of simulation for all six faults, six different ~kn values are then 

known and are "equivalent," in that they all degrade the system's performance equally. 

Table 2.4 below shows the six simulated faults and their "critical" parameter changes. 

Table 2.4 Air conditioner faults simulated 

Fault Simulated .. Parame~~r Varied % Change 
reduced evaporator airflow volumetric air flow rate -62% 
reduced condenser airflow volumetric air flow rate -21% 

fouled condenser air-side heat transfer coefficient -52% 
compressor leak % discharge gas flowing as normal -7% 

low motor efficiency compressor power scale factor +7% 
system undercharged total refrigerant mass -9% 

Two of the simulated faults, compressor leak and low motor efficiency, could not 

be simulated using the original version of the model, so a few additional equations were 
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added as documented in Appendix F. As mentioned in Section 2.2.1, parameters may be 

changed easily within the simulation model, but experimentally the faults are not as easy 

to simulate. This and other experimental issues are addressed in Appendix A. 

Note that the critical value for evaporator air flow rate (-62%) is quite large. In 

fact, intuitively it seems much larger than should be necessary to decrease COP by 5%. 

Figure 2.3 shows a plot of simulated COP vs. evaporator air flow. Apparently the base 

case evaporator air flow rate was greater than optimal, so the initial reduction actually 

increased COP. This demonstrates a possible shortcoming of any FDD algorithm that 

expects monotonic or linear effects of faults on system performance. 
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Figure 2.3 Effect of decreased evaporator air flow on simulated COP 

The plot shows that a decrease in air flow causes the COP to increase to a point, 

due to the fact that initially the system power requirement (specifically, evaporator fan 

power) drops more quickly than evaporator capacity. 

Also as evaporator air flow rate is reduced the evaporating temperature falls as the 

exit air temperature approaches the fin surface temperature. Beyond this point any further 

reduction in the evaporator air flow rate reduces system capacity, driving down 

evaporating temperature which in turn reduces compressor mass flow rate. However 

compressor power drops too, almost proportionally, so the reduction in COP is rather 

small. At extremely low air flow rates, the simulation model may not be accurate. 
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Chapter 3 

Choosing the Best Sensor Locations 

3.1 Introduction 

Chapter 2 introduced the fact that there are more possible sensor locations than 

included faults for both the refrigerator and air conditioning systems. The first objective 

of this project, introduced in Section 1.2, states the need for a small set of sensors. In the 

interest of cost minimization it would be beneficial to use as few sensors as possible in 

diagnosing a given number of faults. A set of sensors will be chosen so as to preserve the 

ability to detect parameter changes and suppress the effect of sensor measurement errors. 

Note that if the number of sensors (M) does not equal the number of faults (N) then a true 

matrix inverse, introduced in equation [2.2], cannot be calculated. If the number of 

sensors is greater than the number of faults included in determining the Jacobian matrix 

(M>N) then the system is over-specified, but a pseudo-inverse matrix may be calculated 

so that equation [2.2] is still exact. Strang (1993) gives an explanation of the 

mathematics involved in calculating a pseudo-inverse. If the number of sensors is less 

than the number of faults (M<N) a pseudo-inverse may still be calculated, but 

unfortunately numerical results have shown that in this case the result of equation [2.2] is 

inconclusive for at least one fault. Hence it appears that if this particular fault diagnosis 

method is to be used, the number of faults (N) is the lower limit for the number of sensors 

(M). For the moment it will be assumed that the absolute minimum number of sensors 

are desired, so the following sections will describe two methods of choosing sensor sets 

such that M=N. 

3.2 Method 1: Condition number 

An exhaustive search was performed for both the refrigerator and air conditioner 

in pursuit of the set of M(=N) sensors that would most reliably diagnose N faults. 

"Exhaustive search" means that a number (>N) of sensors were considered, and every 

possible combination of M=N was analyzed. In an attempt to quantify and rank the 

relative "quality" of each set of sensors considered, a singular value decomposition 

technique was used. When the decomposition of each square Jacobian matrix was 
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performed, N "singular values" were computed. These singular values are always greater 

than or equal to zero. The ratio of the largest singular value to the smallest defines the 

"condition number" of the matrix. If the smallest singular value is equal to zero, then the 

condition number is infinite and that matrix is singular, meaning that it has no solution 

vector. 

The condition number of a Jacobian gives a measure of the independence of the 

included sensors. In the case where M=N (square matrix), as two rows become closer to 

being multiples of each other, the condition number approaches infinity and the matrix 

becomes singular (no solution). The condition number of a Jacobian containing unrelated 

sensors is smaller than that of a Jacobian containing two closely related sensors 

(compressor discharge and condenser inlet temperatures, for example). Note that the 

condition number also gives a general indication of how measurement errors in the Ax 

vector will affect the calculation of the Ak vector in equation [2.2]. Dongarra, et al. 

(1979) give a thorough and useful description of the condition number and singular value 

decomposition of a matrix. 

3.2.1 Refrigerator results 

As described in Section 2.2.1, the refrigerator has 13 possible sensor locations and 

8 faults to be detected. Therefore model results (at the following conditions: ambient 

temp. = 75°P, freezer temp. = 5°P, fresh food compartment temp. = 45°P) were used to 

select the "best" sets of 8 sensors out of 13 candidates based on the condition numbers of 

the resulting Jacobian matrices. Eight faults were included in the analysis, therefore eight 

sensors were considered, resulting in a square (8 x 8) Jacobian. There were more than 

1200 possible sensor sets, each with its own Jacobian. Pigure 3.1 below shows a 

distribution of 215 sensor sets having condition numbers less than 1000. The figure 

shows that in the range of 0-50 (which is the lowest, therefore possibly the best) there are 

20 different sensor combinations, which means there is some flexibility in choosing 

sensor locations. 
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Figure 3.1 The 215 best conditioned sensor sets (refrig) 

The lowest condition number available is approximately 36. Table 3.1 below includes 

the 20 best sensor sets, based solely on Jacobian condition number. 

Table 3.1 Simulation sensor sets, ordered by condition number (refrig) 

Condo POls TSheil TOis TCQndOut TUQljn~ TeVlloOut TCOtooIn ~X ~ 35.8 X X X X 
35.8 X X X X X X X X 

36.0 X X X X X X X X 

36.0 X X X X X X X X 
36.9 X X X X X X X X 
37.1 X X X X X X X X 
37.2 X X X X X X X X 
37.2 X X X X X X X X 
37.4 X X X X X X X X 
37.4 X X X X X X X X 
38.3 X X X X X X X X 

38.5 X X X X X X X X 
42.8 X X X X X X X X 
43.1 X X X X X X X X 
43.1 X X X X X X X X 
43.3 X X X X X X X X 
44.4 X X X X X X X X 
44.6 X X X X X X X X 
44.6 X X X X X X X X 
44.8 X X X X X X X X 
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The results of this analysis indicate that there are numerous sensor sets that may 

give diagnoses of similar quality. Diagnosis quality is specifically addressed later in 

Chapter 3. Note that two sensors, RunTime and fz (damper position), are included in 

every sensor set. The reason that they appear in every set can be explained by the fact 

that two of the faults included in the set of eight affect only 2 of the 8 sensors. Two of 

the faults that were simulated with the model, fresh food gasket leak and freezer gasket 

leak, are "load faults," which have no effect on the system operating conditions (i.e. 

cabinet and refrigerant temperatures) and therefore no effect on most sensors. The only 

two sensors that are affected by load faults are the compressor RunTime and damper 

position, therefore those two sensors must be present in the final set if load faults are to 

be detected. Requiring that those two sensors be present eliminated more than 700 

possible sensor sets (they had infinite condition numbers), leaving approximately 460 

candidate sets remaining. Appendix D illustrates mathematically this distinction between 

the two types of faults. 

Model results indicate that the damper position does not change more than 1 %, 

even for load faults, but even this small change can make a difference in fresh food 

compartment cooling. It is assumed here that the damper would be electronically 

controlled in an actual unit, thus making it possible to detect these small changes. 

There are some other trends that can be observed in Table 3.1. Note that the 

evaporator outlet temperature and compressor inlet temperature are included in each of 

the top 20 sets. They are not mathematically necessary, like RT and fz are, but just 

happen to be present in all of these well-conditioned Jacobians. An explanation is that 

the suction line heat exchanger is located between the evaporator outlet and the 

compressor inlet, so the difference in those two temperatures gives an indication of how 

efficiently the heat exchanger is working, which is related to the mass flow rate of 

refrigerant through it. That information is useful in detecting faults such as a clogged 

capillary tube and a worn compressor (both reduce mass flow). 

It is also apparent that either the evaporator air or refrigerant outlet temperature 

must be included. Both are indicators of evaporator capacity and are useful in detecting 

faults such as frost on the evaporator or a worn compressor. Condenser faults are 

indicated by either the condenser or liquid line outlet temperature, one of which is present 
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in every set shown in Table 3.1. Those two sensor locations are separated only by the 

section of the liquid line used to wann the door flange areas, so the difference between 

them is nearly constant. 

There is an interesting relationship among the following four sensors: compressor 

power, compressor shell temperature, discharge temperature, and condenser air outlet 

temperature. Two of the four are always present. The shell and discharge temperatures 

are never in the same set because the shell temperature is related almost linearly to the 

discharge temperature for many refrigerator and air conditioner compressors. This has 

been demonstrated by Cavallaro and Bullard (1995) and Mullen et al. (1998). All four of 

the sensors detect inefficient operation, either directly as compressor power input or 

indirectly via the increased amount of waste heat rejected. Every sensor set in the top 

half of Table 3.1 includes the condenser air outlet temperature, so it is apparently a good 

sensor to use, and a potentially inexpensive substitute for compressor power 

measurement. 

3.2.2 Air conditioner results 

As described in Section 2.2.2, the air conditioner has 12 possible sensor locations 

and 6 faults to be detected. Therefore model results (at the standard industry rating 

condition: indoor temp. = 80°F, outdoor temp. = 95°F, indoor RH = 50%) were used to 

select the "best" sets of 6 sensors out of 12 candidates based on the condition numbers of 

the resulting Jacobian matrices. Six faults were included in the analysis, therefore six 

sensors were considered, resulting in a square (6 x 6) Jacobian. There were more than 

900 possible sensor sets, each with its own Jacobian. Figure 3.2 below shows 267 sensor 

sets having condition numbers less than 1000. The figure shows that the majority of the 

sensor sets fall toward the lower end of the chart, which again means there is flexibility in 

choosing sensor locations. 
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Figure 3.2 The 267 best conditioned sensor sets (ale) 

The lowest condition number available is approximately 9. Table 3.2 below 

includes the 20 best sensor sets, based solely on Jacobian condition number. 

Table 3.2 Simulation sensor sets, ordered by condition number (ale) 

Cond.# WComp POls PSueI TOls TCpndOut T UorineQut Tevaoln TeWltlOut TCompln T~ TAevaoOut TShell 
9.3 X X X X X X 
12.1 X X X X X X 
12.3 X X X X X X 
12.8 X X X X X X 
14.3 X X X X X X 
15.9 X X X X X X 
17.2 X X X X X X 
17.4 X X X X X X 
17.5 X X X X X X 
17.7 X X X X X X 
18.8 X X X X X X 
19.2 X X X X X X 
19.9 X X X X X X 
19.9 X X X X X X 
21.4 X X X X X X 
21.4 X X X X X X 
21.6 X X X X X X 
22.3 X X X X X X 
22.5 X X X X X X 
24.1 X X X X X X 
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Unlike the refrigerator, no load faults were simulated in the air conditioner case, 

but there are still trends that can be observed in Table 3.2. Note that in the alc case it is 

not necessary to have both the evaporator outlet and compressor inlet temperatures in the 

same sensor set, as there is no suction line heat exchanger as in a refrigerator. The 

compressor discharge pressure and condenser air outlet temperature, however, are 

included in each of the top 20 sets, while the compressor power appears in none of the top 

20. 

As in the refrigerator case, the shell and discharge temperatures do not appear in 

the same set because the shell temperature is related nearly linearly to the discharge 

temperature for many refrigerator and air conditioner compressors, as mentioned in 

Section 3.2.l. 

At least one of three temperatures (evaporator inlet, outlet, or air outlet) appear in 

each set with the exception of one with condition number = 19.9. This is one of the few 

sets in which compressor suction pressure is included, which is nearly the same as 

evaporating pressure and an indicator of evaporator performance. Both condenser outlet 

and liquid line outlet temperature never appear together in any of the sensor sets, but 

surprisingly there are a couple sets in which neither appear (condition number = 17.2 and 

22.3). In these sets two of the three aforementioned evaporator sensors appear, so 

apparently the inclusion of more information about the evaporator indirectly assists in 

diagnosing condenser faults. 

3.2.3 Detection accuracy example 

The following example illustrates how error propagation is related to the 

Jacobian's condition number. Figure 3.3 is an uncertainty distribution on the calculation 

of a single ~k element (in this case, a clogged capillary tube in the refrigerator where the 

captube exit area was reduced by 16%) using equation [2.2]. Both the Jacobian matrix 

and the ~x vector were assumed to have random errors associated with them. See 

Appendix C for a complete discussion of these errors and of uncertainty in the diagnostic 

method. Two different sensor sets, resulting in Jacobian matrices with two different 

condition numbers, were used in the following example. The sets are listed in Table 3.3. 

20 



Table 3.3 Two sensor sets used in Figure 3.3 

Set 1/460: Condo # = 35 Set 46/460: Condo # = 77 

TShell Wcomp 

TCondOut POiS 

TEvapOut TShell 

Tcomp'n T Evapln 
TAcondOut TAcondOut 
TA,vapout TA,vapout 
RunTime RunTime 

damper position damper position 

Figure 3.3 below compares the ~k calculation (reduction of captube exit area, in 

this case) using sets #1 and #46. Note that the distribution of set #1, with its lower 

condition number of 36, is not as wide as that of set #46. There is less uncertainty in ~k 

when sensor set #1 is used. 

Uncertainty Distribution for Set #1/460 Uncertainty distribution for set #46/460 

detection +---f--+ Late detection detection +---f--+ Late detection 

15 

10 

5 

o .... ~ ....... -
-25 -20 -15 -10 -5 o -25 -20 -15 -10 -5 o 

Change in captube exit area, % Change in captube exit area, % 

Figure 3.3 ~k uncertainty distributions using sets #1 and #46 

Both sensor sets result in distributions that are centered about the correct ~k value 

of -16% (this value was introduced in Table 2.2), but the uncertainty ranges are different. 

The widening distribution shown in the figure illustrates the need for a Jacobian with a 

lower condition number. If any particular calculated ~ uncertainty distribution were to 

include a value of 0% on the x-axis (indicating no parameter change), then a fault causing 

a 5% loss of energy efficiency could possibly go completely undetected. The area to the 

right of the correct ~k value is denoted as "late detection," indicating that calculated ~k 

values lying closer to zero than their actual value (the threshold value of -16% in the case 
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of Figure 3.3) mask the reality that the actual ~k value may exceed the threshold value 

before the threshold value is actually calculated, hence detection is late. Conversely, the 

width of the distribution lying left of the true fault magnitude indicates the potential for 

"false positives." This argument makes it clear that a narrow, tall distribution is much 

more desirable than a wide one. 

3.3 Method 2: Sensor contributions 

It has been established that a Jacobian having the lowest condition number will 

choose sensors that are most independent of one another, which is also an attempt to 

suppress the effects of measurement uncertainty. Another way to minimize the 

propagation of uncertainty due to anyone sensor is to minimize the importance of that 

sensor's signal contribution. Another criterion for sensor selection was devised with this 

purpose in mind. Consider equation [3.1] below. It is an expanded form of equation 

[2.2]. When a ~~ value is calculated, it consists of the sum ofM terms: 

[3.1] 

Equation [3.1] suggests that a certain sensor may contribute more information to the 

detection of one fault than another. It is apparent, then, that the strongest sensor location 

for a given fault is that whose product (a~/8xnJ ~xm contributes most significantly to the 

~~ sum for that fault. For example, the condenser outlet temperature is expected to be a 

better indicator of a fouled condenser than would some other sensor located on a different 

component, such as the compressor inlet temperature. If this is the case, then the product 

in equation [3.1] involving ~(condenser outlet temp.) would indeed be greater than the 

product involving ~(compressor inlet temp.). This fact allows us to consider possibilities 

concerning a fault's independence from some sensors and its dependence on others. 

Consider these extreme cases: 

a) A fault's detection is completely dependent on one sensor, meaning that only one 
ofthe products in equation [3.1] is nonzero. 
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b) A fault's detection depends equally on every included sensor, meaning that every 
product in equation [3.1] is equal. 

Case (a) may at first glance appear to be the better choice. It is simpler to understand -

one sensor goes with each fault. However, from a more conservative perspective, case 

(b) is actually more desirable because the detection process is not dominated by anyone 

sensor. Additionally, if one sensor were to malfunction in case (b) and contribute an 

inaccurate term to the calculation it would not affect the final L\k estimate as much as if it 

were the only sensor that mattered. For example, if a sensor were to fail in case (a), the 

system would either indicate a false positive or it would never indicate a fault even when 

one was present, depending on the nature of the failure. In case (b) the diagnosis method 

would be weakened, but perhaps not disabled because only (lOO/M)% of the M<: 

calculation would be inaccurate. Consider a simple example: 

Suppose there is a 2 x 2 inverse Jacobian used with two sensors to detect two faults: 

rr\1 
lJ -1 2,1 

r\2 1 r L\x 1 r L\k l 1 
r I 2,2JlL\x J=lL\k2J 

Suppose there are three different sensors being considered for the Llx vector. The ftrst 
fault kl causes the ftrst two sensors XA and XB to rise by 5°F. The third sensor Xc does not 
change. First consider the use of sensors XA and Xc in the Llx vector. The equation used 
to calculate the ftrst fault is 

[3.2] 

[3.3] 

But lll,2 Llxc = 0, so lll,1 = 115. Now suppose sensor one were to fail in such a way that 
the variable LlXA was being read as (~XA + K). Since ~kl is completely dependent on ~XI 
(meaning that J-II,2 ~xc = 0) then ~kl is calculated as 

and the error in &1 is (I-II,I K), or (K/5). Now suppose sensors XA and xB are used 
instead, so by equation [3.3], l\1 ~XA = l\2 ~XB and l\1 = J-\2 = 1110. If the same 
sensor failure occurs, then ~kl is calculated as 

and the error in ~kl is (I-\I K), or (KilO). The error is now half as large as in the ftrst 
case. By similar logic, as more sensors are used and M becomes larger, this type of error 
in the ~k calculations becomes smaller. A sensor failure directly affects the ~x vector, 
but the extent to which it affects the ~k calculation depends on the element it is 
multiplied by. 
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It is apparent, then, that matrices with equal sensor contributions are desired over 

matrices with independent sensor contributions. The following steps outline a method of 

quantifying this concept. 

Each product that appears III equation [3.1] represents an individual sensor's 

contribution to the total dk calculation. Therefore the contribution of sensor n to fault m 

can be quantified as: 

[3.6] 

As discussed earlier, the ideal scenano is where each sensor has the same percent 

contribution to each fault as every other sensor. However in such a complex system that 

is an unlikely case. Therefore it is desirable to know how "close" a sensor set is to this 

optimal condition. The following RMS "sum-of-squares" method is proposed: 

1) First calculate each sensor's contribution to each fault using equation [3.6]. As an 
example, this was done for a set of sensors in Table 3.4 below. The Table shows 
the percent contribution of each sensor to each refrigerator fault. Each row in the 
table represents a single fault, and each column shows a single sensor's 
contribution to each of the 8 faults. The sensor set used here is the first one listed 
in Table 3.1 earlier (the refrigerator Jacobian with the best condition number). 

Table 3.4 Sensor contributions (%) for Jacobian condition number=35.8 

fault TSheU T~ TEvaoOul T~ ,_~ T&ondOut T&vacQu' RT f% 
captube clog 0 4 87 21 0 -11 0 0 
worn comp 0 -16 25 52 0 38 0 0 

low motor eft. 104 -1 0 1 -4 0 0 0 

frosted evap 0 -14 -20 61 0 74 0 0 
fouled condo 1 121 7 -29 1 -1 0 0 

low cond air flow -5 7 2 -5 102 0 0 0 
ft gasket leak 0 0 0 0 0 0 27 73 

fz gasket leak 0 0 0 0 0 0 73 27 

Note that each row sum is equal to 100 (except for rounding error) because the 
sensor contributions to fault detection must sum to 100%. Figure 3.4 graphically 
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illustrates Table 3.4 in the case of a clogged capillary tube. Ideally each sensor 
would contribute equally, but realistically this is not the case. 
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Figure 3.4 Sensor contributions to clogged captube detection 

2) Using the resulting matrix from part 1), calculate the square root of the sum ofthe 
squares of all 64 elements: 

M N 

RMS = II (elementn,m)2 [3.7] 
m=! n=! 

The minimum value that this function can have is 1, in the case where M=N and 
each element represents a sensor's % contribution to a parameter calculation. This 
will only occur when all of the elements are equal, meaning that each sensor is 
contributing equally to each fault. Appendix E shows a proof of this statement. 

3.3.1 Refrigerator results 

A calculation of the RMS value of Table 3.4 results in a value of 2.68. This is 

somewhat greater than 1, so obviously the sensors are not contributing equally. Another 

exhaustive search was performed on all of the possible Jacobians, this time in search of 

the lowest RMS values. Table 3.5 below shows the best 20 sensor sets in terms oflowest 

RMS values. 
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Table 3.5 Simulation sensor sets, ordered by RMS value (refrig) 

RMS Cond W T tvaoOut~ 
2.50 53.1 X X X X X X X X 

2.50 51.9 X X X X X X 
2.50 53.6 X X X X X X 
2.50 52.3 X X X X X X 
2.57 54 X X X X X X 
2.57 55.3 X X X X X X 
2.59 38.3 X X X X X X 

2.59 38.5 X X X X X X 

2.62 37.2 X X X X X X 
2.62 37.2 X X X X X X 
2.62 37.4 X X X X X X 
2.62 37.4 X X X X X X 
2.64 37.1 X X X X X X 

2.65 36.9 X X X X X X 

2.67 57 X X X X X X 
2.67 36 X X X X X X 

2.67 36 X X X X X X 

2.68 35.8 X X X X X X 

2.68 35.8 X X X X X X 

2.69 55.6 X X X X X X 

All of the sensor sets in Table 3.5 have fairly low condition numbers, so there 

seems to be good agreement between the two sensor selection methods. 

3.3.2 Air conditioner results 

For the air conditioner case also, another exhaustive search was performed on all 

of the possible Jacobians in search of the lowest RMS values. Table 3.6 shows 22 sensor 

sets whose Jacobians have RMS values less than 2.5. The results for the air conditioner 

case don't show the same degree of agreement between condition number and RMS value 

as did the refrigerator case. There seems to be a need for closer inspection of these two 

methods. 
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Table 3.6 Simulation sensor sets, ordered by RMS value (alc) 

RMS Cond Wcomo POlS PSuel TDis ~ ·TevaoOlJt T MdOUl T&:vaoOut 
2.08 106.0 X X X X X X 
2.08 106.2 X X X X X 
2.10 105.9 X X X X X X 
2.10 106.2 X X X X X 
2.10 108.6 X X X X X X 
2.10 108.9 X X X X X 
2.11 105.9 X X X X X X 
2.11 106.2 X X X X X 
2.12 108.4 X X X X X X 
2.12 105.9 X X X X X X 
2.12 108.8 X X X X X 
2.12 106.2 X X X X X 
2.12 105.8 X X X X X X 
2.13 106.2 X X X X X 
2.14 108.2 X X X X X X 
2.14 108.7 X X X X X 
2.14 108.3 X X X X X X 
2.14 108.7 X X X X X 
2.17 108.1 X X X X X X 
2.17 108.6 X X X X X 
2.48 120.1 X X X X X X 
2.49 122.9 X X X X X X 

3.4 Condition number vs. RMS comparison 

Two methods of choosing sensors have been presented in Sections 3.2 and 3.3. 

They are not interchangeable, as we have seen (the methods will not conclude that the 

same sets are best). The condition number applies only to the Jacobian matrix itself, and 

chooses sensors that are most independent of each other. The RMS value of a matrix 

measures the products ofthe Jacobian and the ~xm residual vectors. It strives to minimize 

the effect of any sensor error by minimizing the importance of any single sensor. Since 

one of the methods depends only on J and the other depends on both J and ~xm' a 

particular sensor set could possibly have a small condition number and a large RMS 

value, or vice versa. 
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3.4.1 Refrigerator 

An early priority is to investigate the agreement between these two methods. 

Figure 3.5a below is a plot of the 215 "best" refrigerator sensor sets (first introduced in 

Figure 3.1) that shows how the RMS value varies with condition number. The plot 

shows that the relationship between the two is not linear, but there is a definite trend of 

the best conditioned matrices having the best RMS values. 
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Figure 3.5a RMS value vs. condition number comparison (refrig, I) 

Figure 3.5b below is simply an enlarged view of the lower left portion of Figure 

3.5a, showing only the matrices with condition numbers less than 180. The same trend is 

still apparent, although it is obvious that matrices with equivalent condition numbers may 

have different RMS values, and vice versa. 

28 



6 
, " '" 

5.5 
: :: :: (OlC!JJ 

......... ; ........... : ........... : ........... ··········;···········:········00········ , , 
, , , , 

5 : :, ,', 0 ---------,-----------,-----------,----------- ----------j-----------,-----------,---------
" , : : : co : , , , 

Q) 4.5 
:::J 
iii 
> 4 

Cf) 

::2: 3.5 0::: 

3 

2.5 

......... : ........... : ........... : ........... ··········:·····0····:···········:········· 
: :: : 0 GO: 

......... j ........... : ........... : ........... ·~~~··~········ro(9CQ·©f······· 
- - - - - - - - - ~ - - - - - - - - - - -'_ - - - - - - - - - _1- _ _ _ _ _ _ _ _ _ _ _ _________ ~ ___________ , ___________ , ________ _ 

......... ;q) ....... 90.??~ .......... ··········;··········J···········I········· ...... ~ ..... Ih··.··· .... :· ......... · ........ ) .......... ~ ........... : ........ . 
, " ,,, 
, " '" 

2 
20 40 60 80 100 120 140 160 180 

Condition Number of Jacobian Matrix 

Figure 3.5b RMS value vs. condition number comparison (refrig, II) 

These two figures would lead one to believe that there is not a significant trade-off 

between these two methods of sensor choice. However, the reader will see that the air 

conditioner results shown in Section 3.4.2 are not as well-behaved. 

3.4.2 Air conditioner 

Proceeding in a manner similar to that of Section 3.4.1, Figure 3.6a below is a plot 

of the 267 "best" sensor sets (first introduced in Figure 3.2) that shows how RMS value 

varies with condition number. The trend seen in Figures 3.5 is not at all apparent here. 

This is evidence that a matrix with a large condition number can have a small RMS value. 
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Figure 3.6a RMS value vs. condition number comparison (ale, I) 

Figure 3.6b below is simply an enlarged view of the lower left portion of Figure 

3.6a, showing only the matrices with condition numbers less than 200. It appears that 

some matrices with small condition numbers «50) do in fact show good RMS values 

(app. 2.5), but some show RMS values 3x greater than matrices with larger condition 

numbers (> 1 00). 
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Figure 3.6b RMS value vs. condition number comparison (ale, II) 
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3.4.3 Average calculation error 

With this evidence, one should now wonder which of these two measures is more 

important. A logical way to pick out the best sensor set js by considering how 

measurement errors will propagate through the calculations, in a manner similar to the 

example discussed in Section 3.2.3. The best sensor set will result in, on average, the 

narrowest d~,eaJc distributions. The only way to measure the average width of every d~ 

distribution for a given Jacobian matrix is to actually plot a distribution similar to Figure 

3.3 for every ~,eaJc and determine the width of a confidence interval associated with each 

distribution. As an example, equation [3.8] is an expanded version of equation [2.2]. 

J-I J-I 
1,1 1,2 

J -I 
2,1 

J-I 
N,I 

J - I 
I,M 

J -I 
N,M 

= [3.8] 

dx M 

By plugging in N separate, known, unique dx vectors (one for each fault), N dk 

vectors result, each with a different nonzero element. Both the Jacobian matrix and the 

dx vector are assumed to have random errors associated with them (see Appendix C for a 

detailed discussion of uncertainty), so N2 different dkeaJc distributions result, N of which 

have nonzero nominal values. This result may be thought of as a NxN matrix of normal 

distributions, where the nominal value of every element is zero except the diagonals, 

which are d~ eri! values. A 90% confidence interval was chosen to represent the width of 

a distribution. Figure 3.7 below shows a graphical representation of distribution width, in 

this case for reduced air conditioner evaporator air flow rate. The best-conditioned 

Jacobian (shown in Table 3.2) was used to detect the fault. The actual d~ value 

simulated was -62%, and Figure 3.7 shows that the fault was detected to within 

approximately ±8% of total flow rate with 90% confidence. Of course, a different 

Jacobian would give a different confidence interval width. 
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Nominal value = -62% 

-100 -80 -60 -40 -20 o 
Change in AC evaporator air flowrate, % 

Figure 3.7 90% Confidence interval width 

3.4.3.1 Refrigerator 

Each Jacobian's "average calculation error" was computed by averagmg the 

distribution width of all N2 resulting distributions for that matrix (this measure of 

detection accuracy gives equal weight to both fault distributions and those centered about 

zero). By computing an average calculation error for every Jacobian, it can be explicitly 

shown how well each will perfonn. In an effort to discover whether a Jacobian's 

condition number or RMS value is ultimately more important, Figures 3.8 and 3.9 plot 

average calculation error vs. condition number and RMS value, respectively, for the 

refrigerator case. 
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Figure 3.9 Average error vs. RMS value (refrig) 

60 

The two graphs show a general trend that a lower condition number and RMS 

value is better, but neither is a black-and-white indicator of final diagnosis quality. 

3.4.3.2 Air conditioner 

Following the example of the previous section, Figures 3.10 and 3.11 plot average 

calculation error vs. condition number and RMS value, respectively, for the air 

conditioner case. 
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The same general trend seen in the refrigerator case is also apparent here, but 

Figure 3.10 shows a bit more independence of condition number than does Figure 3.8, 

specifically the fact that the matrices with the smallest average error have condition 

numbers slightly greater than 100. These graphs may lead one to believe that RMS value 

is a bit more meaningful in terms of indicating which lacobians best quell the 

propagation of random sensor errors. 
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3.5 Adding redundant sensors 

Earlier it was assumed that M=N was the minimum number of sensors required to 

detect N faults (see Section 3.1). It is known that M cannot be less than N, but equation 

[2.2] is still an exact relationship when M>N. An issue that should be addressed is 

whether extra sensors bring extra accuracy to the L1k calculation, and whether that extra 

accuracy is worth the extra cost. Simulation results show that extra sensors do in fact 

improve L1k calculation accuracy. Section 4.1 will provide a quantitative demonstration 

of calculation accuracy using extra sensors. In addition to this evidence, there is another 

benefit to the inclusion of extra sensors besides improved accuracy. As stated earlier, 

there are different types of errors possible in the calculation of L1k, including errors due to 

the natural propagation of uncertainty present in each sensor and due to an unexpected 

sensor failure of some sort. In the case of a faulty sensor, the greater the number of 

sensors included in the detection process, the less effect one faulty sensor reading will 

have on the results (this is similar reasoning to that which led to a desire for a low RMS 

value). If, for example, each sensor's product (a~/axnJ L1Xm (see equation [3.1]) is of the 

same approximate magnitude, each sensor would contribute approximately (100/M)% to 

that particular L1~ sum. Obviously if more sensors are included in the analysis, each 

individual sensor's contribution is decreased. This would provide insurance against 

sensor failure and false positives. If a sensor were to relay a faulty reading, it would have 

less impact on the final L1~ calculation than if M=N (it also helps to think of a sensor 

failure simply as a larger-than-normal random uncertainty). There is a trade-off between 

reliability (more sensors = less chance of a false positive) and cost (fewer sensors = 

cheaper implementation). There is only a slight negative side to using an extra sensor 

besides its initial cost: the chance of that sensor failing. 

Another advantage that arises with the addition of extra sensors is related to the 

sensor contribution issue. Consider an example: Suppose there is a fault that is detected 

mainly by a single sensor. Figure 3.12 below shows sensor contributions using 

refrigerator sensor set #1 (from Table 3.3) to detect a fouled condenser. 
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Figure 3.12 Sensor contributions to fouled condenser detection (8 sensors) 

It appears that the condenser outlet temperature is the sensor that contributes the 

most to the detection of this particular fault. Knowledge of the refrigeration system, 

however, indicates that the condenser outlet and liquid line outlet temperatures are 

practically identical (the two sensors are redundant). Perhaps by adding an extra 

redundant sensor the contributions may be distributed more evenly. Figure 3.13 below 

shows the sensor contributions using 9 sensors (sensor set #1 plus liquid line outlet 

temperature) to detect the same fault. 
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Figure 3.13 Sensor contributions to fouled condenser detection (9 sensors) 

It appears that the previous assumption is correct. A redundant sensor will in fact 

ease the load on any single sensor, thereby reducing the probability of a false positive due 

to any error in that sensor's reading. In the previous example the liquid line outlet 

temperature was added because it was known to be dependent on the condenser outlet 

temperature. This sort of information may not always be known in advance. The RMS 

value of a matrix can help a user decide which extra sensor(s) to add to a square Jacobian. 

Extra sensors will reduce the RMS value of a Jacobian, but certain sensors will lower it 

more than others. 
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Chapter 4 

Results 

Chapters 2 and 3 outlined a FDD method and a logical algorithm for choosing the 

best sensor locations. This chapter will review the quality of the fault detection that is 

obtainable using this FDD method. Issues of interest include fault detectability 

thresholds and detection accuracy using the minimum number of sensors vs. using extra 

sensors. Note that this chapter tests the FDD method in two ways. The first uses a 

detailed simulation model, off-line, to calculate the Jacobian which relates faults to sensor 

responses. The second obtains the Jacobians experimentally, by inducing faults and 

observing sensor response. The resulting Jacobians form the heart of the on-line model 

that can be programmed into a microprocessor to detect faults in a refrigeration or air 

conditioner system. Sections 4.1 - 4.3 present only model results and analysis, while 

Section 4.4 deals only with experiments. 

4.1 Detection Accuracy 

Two important questions that must be answered relate to the issue of fault 

detectability thresholds, namely: how severe does a fault have to be before the proposed 

FDD method will detect it? and: how much is detection accuracy improved by 

increasing the number of sensors? Chapter 3 described two different criteria with which 

to choose the "best" set of sensors. One criterion involved the condition number of the 

Jacobian, while the other involved a search for "equality of contribution" among sensors. 

However, based on results shown in Chapter 3, neither of these is 100% dependable for 

picking out the best set of sensors based on average calculation error (also introduced in 

Chapter 3). This section will focus on determining detectability thresholds for the best 

sensor sets (M ;;::: N). 
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4.1.1 Air conditioner 

Figures 3.10 and 3.11 show that the air conditioner Jacobian showing the lowest 

average calculation error (about 9%) has a condition number of approx. 108 and an RMS 

value of2.2. Table 4.1 below shows the sensor set used to construct this Jacobian. 

Table 4.1 Air conditioner set of 6 sensors with lowest calculation error 

Condo # = 108 RMS = 2.2 

Wcomp 
PDiS 
TDis 

TCondOut 
TAcondOut 
TAEvapOut 

It was stated that the average calculation error (described in Section 3.4.3) for this 

sensor set is approximately 9%. Table 4.2 shows the numbers from which that figure 

(9%) was calculated. It lists the width of each 90% confidence interval (see Figure 3.7 

for graphical representation of confidence interval) in the form: ~(parameter) = [nominal 

value ± 1/2 width of c.1.] %. Note that all of the nominal values in the table are expected 

to be exact (the same critical fault magnitudes as listed in Table 2.4). The reason is that 

the inverse Jacobian J-1 was multiplied by the same set of ~x vectors that was used to 

create the Jacobian J in the first place. The 90% confidence intervals are simply an 

indication of how much uncertainty is involved even when the nominal calculated value 

is perfect. 

Table 4.2 Set of 90% confidence intervals, best set of 6 sensors 

simulated fault: 

calCI.Jlated Ak", . % 
evap air flow 
cond air flow 

cond hair 
% flow thru system 

power map 
total charge 

lowevap 
airflow 

0 
0 
0 
0 2 

low cond fouled 
cond 

nom +/. 

0 3 

0 
0 
0 2 0 2 
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compressor low motor 
leak efficiency 

nom +/. nom +/-
0 3 0 3 
0 4 0 4 

0 13 
2 

2 
0 2 

low 
charge 

3 
0 5 
0 13 
0 2 
0 1 
~9 2 



Each column of Table 4.2 (low evap air flow, low cond air flow, etc.) represents 

the result of the inverse Jacobian multiplied by a single ~x vector, generated by the 

simulation of that particular fault. The left part of each column shows the nominal 

calculated value of each parameter, the right part shows the [±] value, or ~ the width of 

the 90% confidence interval. The shaded boxes highlight the parameter calculations that 

are expected to be nonzero, based on the fault present. 

As an example, consider the second column, where reduced condenser air flow 

was simulated: all nominal values are just as expected. The only nonzero value is for 

"cond air flow" since that is the key parameter for this fault. The calculated value (-21 % 

of the base case value) is exactly the amount by which the parameter was degraded in 

order to simulate the fault. The [±] value for the parameter is 5% of the base case value, 

meaning that we can be 90% sure that the actual change in the condenser air flow was 

between -26% and -16% of the base case value. The fact that magnitude of the nominal 

value is significantly larger than that of the [±] value indicates that a false positive is not 

likely. The widest confidence interval (highest [±] value) in the second column is 

associated with the condenser hair parameter calculation. It is 14% of the base case value, 

but a false positive is still unlikely since its ~kcrit value (shown in Table 2.4) is -52%. 

Note that the [±] values for each individual calculated parameter are fairly consistent no 

matter which particular fault has been simulated. 

This Jacobian's average calculation error (9%) was calculated by averaging the 

width of every confidence interval (= 2 x [± value]). These air conditioner results show 

that all of the listed faults are detectable (with at least 90% confidence) at a level that 

causes the system COP to drop 5%. This can be verified by noting that all nonzero 

nominal values in Table 4.2 are larger in magnitude than their accompanying 

uncertainties. 

The next issue of interest is the effect that extra sensor addition will have upon 

fault detectability. With this goal in mind, an exhaustive search was performed of all 

possible sets of 7 sensors in search of the one with the lowest average calculation error. 

Figures 4.1 and 4.2 below show average calculation error vs. condition number and RMS 

value, respectively, for sets of7 sensors. 
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Figure 4.1 Average calculation error vs. condition number (ale, 7 sensors) 

The same trends are apparent here as were in Figure 3.10, but more sets seem to be 

clustered toward the lower left corner of the plot (note that the y-axis is from 0-60, where 

in Figure 3.10 it was 0-120). 
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Figure 4.2 Average calculation error vs. RMS value (ale, 7 sensors) 

Again, this plot's shape is similar to that of Figure 3.11. The sensor set that shows 

the lowest calculation error (approximately 8%) is shown in Table 4.3 below. 
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Table 4.3 Air conditioner set of 7 sensors with lowest calculation error 

Condo # = 106 RMS = 1.9 

Wcomp 

PDiSCharge 

T Discharge 

TCondOut 

T LiqLineOut 

T CondAirOut 

T EvapAirOut 

The average error went down about 1 % by adding one sensor. Note that the set is 

the same as that shown in Table 4.1, but with the liquid line outlet temperature added. 

The reason that detection accuracy improved is because the liquid line outlet and 

condenser outlet temperatures are closely related (they are separated only by the nearly 

adiabatic liquid line). The addition of this redundant sensor took half of the burden off 

the condenser outlet sensor, allowing more equal contributions, as discussed in Section 

3.5). The addition of one sensor did not help detection accuracy much, and one wonders 

how well the FDD method could possibly perform. To answer this question, all 12 of the 

candidate sensor locations (listed in Table 2.3) were used to detect faults. When all 12 

sensors were used, an average calculation error of 7.8% resulted. In the air conditioner 

case, it seems that the cost of extra sensors probably exceeds any performance benefit, at 

least for this particular unit. 

4.1.2 Refrigerator 

As mentioned III Section 2.2, a refrigerator is more complex than an aIr 

conditioner due to the fact that evaporator air flow is divided and flows to more than one 

compartment. The refrigerator results are not as illustrative as results from the previous 

section, perhaps because of this added complexity, or perhaps due to the presence ofload 

faults (see Appendix D for a complete discussion). The linkage (or lack thereof) between 

system and load faults may weaken the FDD method. Therefore the results obtained 

were not as successful as with the air conditioner. Another possible reason is that the 

refrigerator model was not verified as rigorously as the air conditioner model. Simulation 

results do not show as much agreement with experimental results, which implies that the 
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predicted sensor responses do not reflect actual responses. This may indirectly affect 

~~alc results. For these reasons, refrigerator results are presented separately in Appendix 

G. 

4.2 Gradual fault development 

All results that have been reported thus far have been for faults detected at their 

critical ~Energy or ~COP values. When these faults occur in an actual system, they will 

develop slowly over time. One of the stated objectives of this project is to minimize the 

chance of false positive diagnoses. This includes distinguishing whether faults have 

reached a critical level or not. This issue is really a direct test of the linearity assumption 

that has been made (see Section B.3 for a discussion of this assumption). That is, we 

want to know if, when a fault is somewhere between its zero and critical levels, the FDD 

method is able to accurately predict the actual fault level. 

In order to test this issue, a Jacobian constructed from the air conditioner sensor 

set listed in Table 4.1 was used to detect a fault as it developed gradually. The inverse 

Jacobian was multiplied by Ax vectors that resulted as the condenser airflow was reduced 

from its base case value to a value 36% less. Figure 4.3 below shows calculated vs. 

actual air flow reduction. 
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Figure 4.3 Calculated vs. actual parameter change for alc condenser air flow 
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The boxed point at approx. -22% is the critical dk value at which the Jacobian 

was constructed. This plot shows that from the no-fault condition to the critical level, the 

predicted parameter value is fairly accurate (the linearity assumption is acceptable). If 

the fault is left to develop past the critical stage, however, the quality of the prediction 

deteriorates rapidly, and the fault is significantly overestimated. Note that any 

linearization between two points gets more accurate as the distance between those point 

approaches zero. Hence, it is apparent that smaller magnitudes of &crit values (such as 

alc low motor efficiency, +7%) will give better agreement between calculated and actual 

than will larger values (such as alc evaporator air flow reduction, -62%). 

Another issue is the ~ calculations that should be zero throughout fault 

development. For example, in the previous example, while the condenser airflow is 

reduced, other ~ calculations should ideally be equal to zero throughout the process. 

Figure 4.4 below shows the predicted values of hair,cond (which would be degraded in the 

case of a fouled condenser, but not in this case of reduced airflow) as the condenser 

airflow is reduced. 

~ 0 6 I 

Q) 
OJ 

4 c - -
Ctl 
.c 
() 

2 I-.... -
.$ 
Q) 

r-:::::lo 0 o n 
E 0 
~ 

L:::J 0 

Ctl 0 0.. -2 - 0 -
"0 0 
Q) .... 0 
~ -4 I- -
:::J 
() 

co -6 I I I I I 
() 

-50 -40 -30 -20 -10 0 10 
Reduction in condenser air flow, % 

Figure 4.4 Calculated haircond vs. actual alc condenser air flow reduction 

Again, the prediction is acceptably close to zero between the fault's zero and 

critical points, showing that the linearity assumption is good, but degrades quickly 

outside that range. This issue of a parameter's zero-calculation is not always as well-
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behaved as shown here. It is known to be a problem in certain cases, notably the case 

where refrigerator LlUAgasket values are actually zero but are calculated considerably far 

from zero, even within the critical range. 

4.3 Jacobian robustness 

An important question that model results may be able to answer is whether faults 

may be effectively diagnosed when the actual operating conditions are different from 

those at which the Jacobian matrix was generated. If not, then extra sensors (beyond 

those used as variables in the FDD method) would be needed (as well as a "bank" of 

Jacobians) in order to identify the system's current operating condition. 

4.3.1 Refrigerator 

In order to analyze this question, a Jacobian was generated using refrigerator 

model results at the standard conditions: ambient temperature = 75°F, freezer temp. = 

5°F, fresh food temp. = 45°F. The Jacobian was constructed using all 13 of the candidate 

sensors listed in Table 2.1, to provide a best-case scenario. As discussed in Section 4.1.2, 

refrigerator results were not as good as air conditioner results, but they are sufficient for 

these purposes. 

Figure 4.5 shows the results when the pseudo-inverse Jacobian was multiplied by 

a number of LlX (residual) vectors taken from model results in the ambient temperature 

range 60 - 90°F. The frosted evaporator fault was chosen to illustrate the results; it was 

fairly typical of most faults. The resulting Llk calculations show how accurately a frosted 

evaporator can be diagnosed at different ambient temperatures. The actual change (target 

value for the calculation) in evaporator air flow was -20% (as noted in Table 2.2), as the 

horizontal line on the plot shows. 
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Figure 4.5 Jacobian robustness, ambient temperature variation 

The plot shows that the diagnosis is perfect at Tamb = 75°F (as expected), but there 

IS significant departure from -20% even when Tamb is within 10° of 75°F. When 

calculation uncertainty is taken into account, the errors shown above could become quite 

detrimental. This plot implies that separate Jacobians are probably necessary for different 

ambient temperature ranges. 

Another parameter that may affect refrigerator diagnosis is the freezer temperature 

(more so than fresh food compartment temperature, as approximately 90% of the air 

flowing over the evaporator is directed to the freezer). A similar plot is shown in Figure 

4.6 below, but the same Jacobian was multiplied this time by sensor readings (~x vectors) 

observed when faults occurred in a refrigerator operating at various freezer temperature 

settings. 
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Figure 4.6 Jacobian robustness, freezer temperature variation 

The plot shows that the change in flow rate is calculated anywhere between -15% 

and -25% over a freezer temp. range of ±1 O°F. The last two plots seem to show that if a 

piece of equipment is expected to be operated over a wide range of conditions, then 

several Jacobians are needed. However if operating conditions are known to be very 

stable and consistent, perhaps only one matrix will be necessary. 

4.3.2 Air conditioner 

As in the refrigerator case, operating conditions are sure to affect the aIr 

conditioner's performance. Since one of the operational parameters is uncontrollable 

(outdoor temperature) and highly variable both geographically and temporally, numerous 

Jacobians will surely be necessary. Simulation results confirm this assumption. 

Another important question is whether indoor humidity will significantly affect 

diagnosis results. Humidity sensors are typically more expensive than temperature 

sensors, so it would be beneficial if it did not have to be measured. As before, simulation 

results were used to answer this question. A Jacobian was generated using simulation 

results at the standard conditions: outdoor temperature = 95°F, indoor temp. = 80°F, 

indoor R.H. = 50%. The Jacobian was constructed using all 12 of the candidate sensors 

listed in Table 2.3, to provide a best-case scenario. Figure 4.7 shows the evaporator 
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airflow calculation results when the pseudo-inverse Jacobian was multiplied by a number 

of ilx (residual) vectors taken from model results in the relative humidity range of 45-

70%. The actual change in evaporator air flow was -62% (as noted in Table 2.4), as the 

horizontal line on the plot shows. 
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Figure 4.7 Jacobian robustness, alc evaporator airflow 

The reduced evaporator airflow fault was chosen to illustrate the results because it 

displayed the worst results of all the alc faults. This is to be expected, as indoor humidity 

variation will affect indoor components more than outdoor. In fact, humidity has only a 

minimal effect on the diagnosis of outdoor component faults. Figure 4.8 below is a 

similar plot, showing the calculation results for reduced condenser airflow as indoor 

humidity varied. The actual change in airflow was -21 %. 

These plots show that humidity mayor may not be an important factor, depending 

on which faults a user is interested in detecting. 
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Figure 4.8 Jacobian robustness, alc condenser airflow 

4.4 Experiments 

All of the analysis done thus far has been based on simulation model results. 

These models are helpful in showing general trends that are important to fulfilling project 

objectives, but one of our goals is to verify model results with experimental data. A 

number of the faults that were simulated with models were also induced experimentally 

in the laboratory. Table 4.4 below lists these faults for each system. 

Table 4.4 Experimentally induced faults 

Refrigerator Airc6nditioner 
frosted evaporator reduced evaporator air flow 

reduced condenser air flow reduced condenser air flow 
fouled condenser compressor high-to-Iow side leak 

fresh food gasket leak low charge 
freezer gasket leak 

Appendix A describes each fault experiment that was performed and lists the 

calculated parameter values for each test (although refrigerator results are discussed in 

Appendix G for reasons given in Section 4.4.2). Table 4.5 below lists the "critical" fault 

levels (parameter changes) observed in experiments. These parameter values, along with 
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variable values, were used to construct experimental Jacobian matrices in the same 

fashion as was done with model results. 

Table 4.5 Experimental critical fault parameter changes 

Refriger~tor Air conditioner 
parameter Akcrit parameter Akcrit 

evaporator air flow -20% evaporator air flow -15% 
condenser air flow -32% condenser air flow -21% 

hair cond -16% % flow through system -9% 
fresh food UA 19% total system charge -19% 

freezer UA 21% 

The following sections discuss FDD results and detection accuracy, when 

experimentally-determined Jacobians were used. As in the model simulation cases, a 

Monte Carlo technique was used to determine the effects of uncertainty and 90% 

confidence intervals for parameter value calculations. 

4.4.1 Air conditioner 

Experimental data for air conditioner runs was taken at the standard capacity 

rating condition: indoor temperature = 80°F, outdoor temperature = 95°F, indoor relative 

humidity = 50%. Note that for the experimental case, unlike the simulations, the liquid 

line outlet temperature was not available as a candidate sensor location. It was not 

installed on the test unit, but the other 11 locations listed in Table 2.3 were available. 

4.4.1.1 Single faults 

In keeping with the example set by the simulation cases, an exhaustive search was 

performed on all possible sets of 4 sensors for those with the lowest condition number, 

RMS value, and average calculation error. The following plots are similar to those seen 

in Chapter 3. Figure 4.9 shows RMS value as a function of condition number. 
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Figure 4.9 RMS value vs. condition number (ale experiments) 

It appears that the same type of trend that was seen in simulation results is seen 

here as well. There is a general trend of the best conditioned matrices also having the 

lower RMS values, but there are also many sets with large condition numbers that have 

low RMS values. Figure 4.10 shows average calculation error (described in Section 3.4) 

as a function of Jacobian condition number. Figure 4.11 shows average calculation error 

as a function of RMS value. 
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Figure 4.10 Average calculation error vs. condition number (ale experiments) 
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Both Figures 4.10 and 4.11 show results similar to those seen in simulations. 

Namely, that the matrices with the lowest values of condition number and RMS tend to 

give more accurate FDD results. These results were used to construct a 4x4 Jacobian for 

detecting the four alc faults listed in Table 4.4. The four sensors used to construct the 

Jacobian were chosen such that the Jacobian gives the minimum average calculation 

error. Table 4.6 lists the sensor set used. 

Table 4.6 Experimental air conditioner sensor set 

4 air conditioner sensors 
Cond # = 19.7, RMS = 1.71 

WComo 

T Discharae 

TCondOut 

T Evaoln 

The detection accuracy of this Jacobian was tested as in Section 4.1, with 90% 

confidence intervals. Table 4.7 below shows how accurately each fault (and non-fault) 

was detected. 
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Table 4.7 Set of 90% confidence intervals, air conditioner experiments 

fault: lowevap low cond compressor 
airflow airflow leak 

c~lpul~t~d 111<0, % nom +/-
evap airflow 0 6 
cond airflow 0 3 

% flow thru system 
total charge 4 0 

The results shown here look quite good. As before, the appropriate fault values 

are highlighted in Table 4.7 for easier reference. The width of the 90% confidence 

intervals are comparable to those shown for model results in Table 4.2. Note that, as 

explained in Section 4.1.1, the i1x (sensor) vectors are the same that were used to 

construct the Jacobian in the first place. Therefore the nominal i1~calc values are exact 

(the same values as shown in Appendix A). 

In the course of performing these experiments, extra tests were done that caused 

COP to decrease by less than 5%. Table 4.8 shows FDD results obtained from these i1x 

vectors, which are independent from the Jacobian. Since the fault levels are less than 

those that caused a 5% reduction in COP, non-linearity effects are also tested. The three 

cases listed in Table 4.8 refer to the following parameter conditions: 

Case 1: 

Case 2: 

Case 3: 

Condenser air flow (-9%) 

Compressor leak (-4%) 

Base case, no faults present 

Table 4.8 Set of90% confidence intervals, ale minor fault experiments 

Case #: 1 2 3 

calcula~edAktl>% nom +/-
evap airflow 2 4 
cond airflow 0 2 

% flow thru system 0 1 
total charge -2 3 
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The appropriate fault values are highlighted in Table 4.8 for easier reference. 

These results are encouraging with the exception of case 2. The severity of the 

compressor leak was overestimated by nearly a factor of 2, and a -7% change in 

condenser air flow was falsely calculated. In the case of condenser air flow, a -7% 

change is significantly less than the critical (5% COP degradation) level, but if it were 

larger a false positive may be indicated. Note that in Tables 4.7 and 4.8 the confidence 

interval widths in each row are approximately equal regardless of whether a critical, 

minor, or no fault is present. This is an indication that the confidence interval width for 

each parameter calculation may be treated as nearly constant. 

4.4.1.2 Multiple faults 

One of the objectives of this FDD method is to detect simulated faults alone and 

in combination. This implies that the method must be able to detect and diagnose 

multiple faults that occur simultaneously. The method is based on theory, discussed in 

Chapter 2, that leads one to believe that it should work equally well for single or multiple 

faults. Multiple fault tests were performed in the laboratory, and will provide a good test 

for the experimental Jacobian. Three alc multiple fault runs were performed, and the 

three cases listed in Table 4.9 refer to the following parameter changes, all of which are at 

their critical values: 

Case 1: 

Case 2: 

Case 3: 

Evaporator air flow (-15%) and condenser air flow (-21 %) 

Low charge (-19%) and condenser air flow (-20%) 

Low charge (-19%) and evaporator air flow (-15%) 

Table 4.9 Set of90% confidence intervals, alc multiple fault experiments 

Case #: 2 3 

evap airflow -15 
cond airflow -21 

% flow thru system -10 o 2 
total charge -19 -21 5 
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Once again the appropriate fault values are highlighted. Detection and diagnosis 

for these multiple fault runs is not quite as good as in the previous table. The confidence 

intervals for each detected fault have widened a bit due to the presence of other faults, 

with the exception of "% flow through system," the parameter involved in detecting a 

compressor leak. See Appendix A for a complete explanation of this and any other 

parameters. A compressor leak was not induced in conjunction with any other fault, and 

in fact the FDD method calculated no false positives. 

The calculated values of evaporator air flow are incorrect by at least 6% (of base 

case value) for all three cases. In case 1, ~(evaporator airflow) is significantly 

underestimated, which probably means the fault will be detected late. In case 2, a 12% 

decrease was calculated, which may lead to a false positive indication. The calculated 

value of condenser air flow is offby 7% (of base case value) in case 2, but is within 3% 

of its actual value in the other cases. It appears here that the presence of more than one 

fault, along with possible nonlinearity effects, present added difficulties in detection. 

4.4.2 Refrigerator 

As discussed III Section 4.1.2, a refrigerator is more complex than an air 

conditioner due to the fact that evaporator air flow is divided and flows to more than one 

compartment. Experimental refrigerator results suffer from the presence of load faults 

just as simulation results did. Another problem with the experiments was with inaccurate 

instrumentation. Recall that in the steady-state experiments, actual compressor RunTime 

was 100% and fz was constant. Calculations were made off-line using readings from 

compartment heaters to estimate values ofRTcalc and fz,calc (see Chapter 2 for a description 

of the heaters and their purpose). Unfortunately, as discussed by Kelman and Bullard 

(1999), the compartment heaters used in the refrigerator experiments gave consistently 

suspect readings. Once again, the refrigerator results are not as illustrative as air 

conditioner results, therefore experimental refrigerator results are presented separately in 

Appendix G. 
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Chapter 5 

Conclusions and Recommendations 

This report documented a FDD method whose purpose is to detect faults before 

they severely hinder the performance of a refrigerator or air conditioner. Since the 

method depends on quasi-steady operation, data must be taken when a system is known 

to have completed a number of undisturbed cycles. The method is general and allows a 

variable number of sensor locations, in some cases with no significant drop in reliability. 

Two methods were proposed as ways of choosing the best set of sensors for 

detecting a given set of faults. One method, based on the condition number of the 

Jacobian matrix, strives to select sensors whose readings are independent of each other. 

The other, the RMS summation method, aims to minimize the effect of any sensor error 

by minimizing the importance of any single sensor. Both methods appear to be good 

indicators of which sensor sets might be the best, but neither proved to have the ability to 

actually choose the best set based solely on minimizing the uncertainty of calculated 

parameter values. A third measure of sensor set quality, average calculation error, was 

also investigated. It chooses sets based on calculation results rather than mathematical 

issues, but is much more computationally intensive and may not always be feasible. It is 

recommended that future researchers examine differences between these methods and 

investigate exactly why they suggest given sensor sets. Table 5.1 below shows how 

many (M=N) sensor sets were considered for each system. 

Table 5.1 Summary of simulation sensor set results 

Refrigerator 
Air conditioner 

Number of candidate 
sensor .Ioeations 

13 

12 6 

Number of possible 
sensor sets 

>1200 
>900 

Table 5.2 shows the best sensor set for each system, based only on the condition number 

of the Jacobian matrix they produce. These sets are presented as an example of "good 

quality" sets. 
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Table 5.2 Best-conditioned simulation sensor sets 

Refrig~r~tor Air conditioner 
T Shell PDiS 

TCondOut T LiqLineOut 

TEvaPOut TComp'n 

TcomPln TAcondOut 

TAcondOut TAEvapOut 

TAEvapOut T Shell 

RunTime 

damper position 

Simulation results show that many faults may be detected using sets of the bare 

minimum number of sensors (i.e. N sensors for N faults, such as the ones shown above). 

However, results also show that including more sensors in the detection scheme increases 

accuracy while guarding against sensor failures. The only drawback to the inclusion of 

extra sensors is their initial cost. In fact, the reliability of this FDD method will probably 

depend directly on how much a user is willing to spend on its implementation. The most 

significant factors will probably be sensor cost and the cost of obtaining quality data 

relating sensor response to fault magnitude, either through experiments or simulations. 

Some limitations have become apparent through this report, and may be addressed 

in future research. For example, this method ultimately relies on a simple linear system 

model. However, actual systems have some highly nonlinear responses to certain faults, 

specifically in the case of an air conditioner that is low on charge, where the condenser 

exit undergoes a change in flow regime from subcooled to 2-phase. 

A problem that was not addressed in this report concerns the fact that all of the 

detectable faults are those that are originally accounted for in the Jacobian matrix. If an 

"unanticipated" fault occurs, it will most likely indicate simultaneous false positives for 

more than one fault (i.e. incorrect faults are indicated). Another possibility, although not 

likely, is that no fault is indicated and it would go completely undetected. However this 

may be only a minor issue, as the behavior of these types of systems are well-known by 

industry, and rarely is a failure a complete surprise to equipment designers. 

57 



References 

Beaver, A.c., J.M. Yin, C.W. Bullard, and P.S. Hrnjak, "An Experimental Investigation 
of Trans critical Carbon Dioxide Systems for Residential Air Conditioning," 
ACRC CR-18, University of Illinois at Urbana-Champaign, 1999. 

Breuker, M.S., and J.E. Braun, "Common Faults and Their Impacts for Rooftop Air 
Conditioners," HVAC&R Research, Vol. 4, No.3, July 1998. 

Breuker, M.S., and J.E. Braun, "Evaluating the Performance of a Fault Detection and 
Diagnostic System for Vapor Compression Equipment," HV AC&R Research, 
Vol. 4, No.4, October 1998. 

Bridges, B.D., C.E. Mullen, and C.W. Bullard, "Simulation of Room Air Conditioner 
Performance," ACRC TR-79, University of Illinois at Urbana-Champaign, 1995. 

Cavallaro, A.R., and C.W. Bullard, "Effect of Variable-Speed Fans on Refrigerator 
Component Heat Transfer," ASHRAE Transactions, 101 :2, 7 pp., 1995. 

Dongarra, lJ., et aI., LINPACK User's Guide, Society for Industrial and Applied 
Mathematics, Philadelphia, 1979. 

Figliola, R.S., and D.E. Beasley, Theory and Design for Mechanical Measurements, John 
Wiley & Sons, New York, 1991. 

Grimmelius, H.T., J.K. Woud, and G. Been, "On-line failure diagnosis for compression 
refrigeration plants," International Journal of Refrigeration, Vol. 18, No.1, 1995. 

Grimmelius, H.T., et aI., "Three State-of-the-Art Methods for Condition Monitoring," 
IEEE Transactions on Industrial Electronics, Vol. 46, No.2, 1999. 

Karki, S.H., and S.J. Karjalainen, "Performance Factors as a Basis of Practical Fault 
Detection and Diagnostic Methods for Air-Handling Units," ASHRAE 
Transactions, 105:1, 1999. 

Katipamula, S., et aI., "Automated Fault Detection and Diagnostics for Outdoor-Air 
Ventilation Systems and Economizers: Methodology and Results from Field 
Testing," ASHRAE Transactions, 105:1, 1999. 

Kelman, S., and C.W. Bullard, "Dual Temperature Evaporator Refrigerator Design and 
Optimization," ACRC TR-148, University of Illinois at Urbana-Champaign, 
1999. 

Mullen, et aI., "Development and Validation of a Room Air Conditioning Simulation 
Model," ASHRAE Transactions, 104:2, 1998. 

58 



Ngo, D. and A.L. Dexter, "A Robust Model-Based Approach to Diagnosing Faults in Air
Handling Units," ASHRAE Transactions, 105:1, 1999. 

Rossi, T.M., "Detection, Diagnosis, and Evaluation of Faults in Vapor Compression 
Equipment," Ph.D. Thesis, School of Mechanical Engineering, Purdue University, 
1995. 

Rossi, T.M., and lE. Braun, "A Statistical, Rule-Based Fault Detection and Diagnostic 
Method for Vapor Compression Air Conditioners," HVAC&R Research, Vol. 3, 
No.1, January 1997. 

Srichai, P.R, and C.W. Bullard, "Two-Speed Compressor Operation in a 
RefrigeratorlFreezer," ACRC TR -121, University of Illinois at Urbana
Champaign, 1997. 

Strang, G., Introduction to Linear Algebra, Wellesley-Cambridge Press, Wellesley, 1993. 

Stylianou, M., and D. Nikanpour, "Performance Monitoring, Fault Detection, and 
Diagnosis of Reciprocating Chillers," ASHRAE Transactions, 102:1, 1996. 

Wagner, J., and R Shoureshi, "Failure Detection Diagnostics for Thermofluid Systems," 
Journal of Dynamic Systems. Measurement. and Control, Vol. 114, December 
1992. 

Woodall, RJ., and C.W. Bullard, "Development, Validation, and Application ofa 
Refrigerator Simulation Model," ACRC TR-99, University of Illinois at Urbana
Champaign, 1996. 

Woodall, RJ., and C.W. Bullard, "Simulating Effects of Multispeed Compressors on 
RefrigeratorlFreezer Performance," ASHRAE Transactions, 103 :2, 1997. 

59 



A.I Introduction 

Appendix A 

Experiment Descriptions 

When there is a fault in a refrigerator or air conditioner, whether or not it is of 

interest depends on how much the system's performance is hurt by that fault. 

Performance degradation in the form of low coefficient of performance (COP) and/or 

increased compressor run time (R T) leads to increased energy use and higher operation 

cost. The majority of FDD analysis in this report was done using model results, but an 

objective of the project is to verify those results with experimental data. 

Experiments were performed such that they could be compared meaningfully to 

simulation model runs. A number of different operating conditions were tested for each 

system, and data was taken at base case (no faults present) conditions and at different 

fault conditions. A perfect set of experiments would show identical dEnergy or dCOP 

values (as seen in model run results) for all fault runs, so all tests could be compared 

without adjustment. However, since actual experiments will inevitably show different 

changes in those variables, the objective is to certify that each experiment decreased the 

variably of interest by a comparable amount. For reasons presented in Chapter 2, the 

variable of interest in the refrigerator case is dEnergy, and in the air conditioner case 

dCOP. 

A.2 Equipment 

A.2.1 Refrigerator 

The experimental refrigerator used for this project is a 25 cubic foot, side-by-side 

Amana charged with R-134a. The only major modification made to the unit was the 

replacement of the original Tecumseh compressor with a two-speed Americold prototype, 

model RV800. Instrumentation of the unit is described in detail by Srichai and Bullard 

(1997). 
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A.2.2 Air conditioner 

The experimental air conditioner used IS a well-instrumented, 3 ton Carrier 

residential split system charged with R41OA. The experimental facility and system 

components are described by Beaver (1999). 

A.3 Experimental procedure 

As described in Chapter 2, the simulation models were used to simulate faults that 

caused a 5% increase in total energy use (refrigerator) or 5% decrease in COP (alc). The 

parameter values that caused these changes were chosen as critical "threshold" values. 

Model results show that in and around these ranges, it is usually reasonable to assume a 

near-linear dependence of any variable on any parameter. This same characteristic should 

also be true of experimental data. It is difficult to induce an exact level of performance 

degradation under experimental conditions, and to know exactly how much an 

operational parameter has been changed. The following sections describe steady-state 

experiments performed on the refrigerator and air conditioner units described in Section 

A.2. In these experiments, data reduction programs were used to estimate values of the 

parameters of interest, as well as COP values, and to verify that they were reasonably 

close to target values. 

A.3.1 Refrigerator 

All results shown in this section were obtained at the following conditions: 

Ambient temperature = 75°F, freezer temperature = 5°F, fresh food compartment 

temperature = 45°F. When refrigerator model runs were performed, the main variable of 

interest was system energy use (instead of COP). However experimentally, for reasons 

explained in Section 2.2, the actual compressor run time was always 100% and system 

power did not always increase upon fault induction. Therefore experiments were 

performed, then the data was used to estimate parameter values, then ~ku,exp values were 

compared to ~ model values. An experimentally-induced fault was deemed to have 

acceptable magnitude if the experimentally-measured parameter change roughly matched 

the model-predicted change. An experimental Jacobian matrix was then constructed 

using changes in parameters and changes in sensor readings just as in the model 
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simulation cases. The data reduction programs used to estimate parameter values were 

written by Srichai and Bullard (1997). 

A.3.1.1 Base case experiments 

Base case data was taken simply by letting the unit run with no artificial 

modifications. These test points are meant to represent fault-free operation. Table A.l 

shows base case results. 

Table A.l Refrigerator base case 

parameters base case 

evaporator air flow, cfm 60.2 
condenser air flow, cfm 131.0 

hair> condenser, Btu/hr-oF 4.30 
UArr, W/oF 0.91 
UArz, W/oF 0.97 

These parameter values are what other fault experiment values are to be compared to. 

A.3.1.2 Frosted evaporator 

For this fault experiment, frost was allowed to accumulate as it would in real 

operating mode while both compartment temperatures were held constant. The system 

was run for approximately 48 hours to degrade performance sufficiently. Due to the 

continuous nature of frost growth, there was no way to have a steady-state amount of 

frost on the coil. 

In order to promote frost growth on the evaporator surface, wet sponges and 

towels were placed in the fresh food compartment while the system operated. These 

moistened the air circulating over the evaporator and allowed frost to build up faster than 

would be expected normally. After the test the refrigerator was allowed to defrost, and 

the frost that had built up on the evaporator was collected as liquid, thus allowing the 

mass of water to be measured. Table A.2 shows parameter values for this fault. 
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Table A.2 Refrigerator frosted evaporator 

parameters base case frosted delta values, % 
value evaporator of base value 

evaporator air flow, cfm 60.2 48.0 -20.3 % 
condenser air flow, cfm 131.0 131.0 0% 

hair, condenser, Btu/hr-oF 4.30 4.30 0% 
UAtt, W/oF 0.91 0.91 0% 
UArz, W/oF 0.97 0.97 0% 

The observed decrease in aIr flow indicates that frost on the evaporator 

significantly decreased the available flow area. More than 1.6 Ibm. of water was 

collected from the evaporator coil upon defrost, which indicates that it can take on a 

significant amount of frost before performance is hurt. 

A.3.1.3 Blocked condenser air flow 

The condenser air flow was blocked by placing duct tape over a portion of the 

condenser fan's discharge vent. This experiment simulates some type of fan blockage, 

such as the refrigerator being pushed too close to a wall or excessive debris built up on 

the vent. Table A.3 shows parameter values for this test. 

Table A.3 Refrigerator blocked condenser air flow 

parameters base case reduced delta values, % 
value condenser air of base value 

evaporator air flow, cfm 60.2 60.2 0% 
condenser air flow, cfm 131.0 89.0 -32.1 % 

hair, condenser, Btu/hr-oF 4.30 4.30 0% 

UAtt, W/oF 0.91 0.91 0% 

UArz, W/oF 0.97 0.97 0% 

An adverse effect that may have occurred during this experiment is condenser air 

recirculation, but the fan speed was not able to be varied, so this was the most accurate 

simulation possible. The refrigerator model did not account for recirculation, but in our 

experiment the effect was probably present. 
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A.3.1.4 Fouled condenser 

The condenser on the test unit is a wire-on-tube type located underneath the unit, 

near the floor. In an actual unit, condenser fouling may occur due to dust and debris that 

builds up on the coil. It was fouled in the laboratory by placing sheets of cardboard and 

towels over the top portion of its heat transfer surface area. Figure A.1 illustrates the 

condenser orientation and cardboard placement. 

cardboard/towel 

7 / ____ •• _________ ;?~-----------J 8
0mp 

air. r 
Yo; ~L-_CO_n_d_e_ns_e_r-, 

8 air 

Figure A.1 Refrigerator condenser housing, side view 

Table AA shows parameter values for this test. 

Table A.4 Refrigerator fouled condenser 

parameters base case fouled delta values, % 
value condenser of base value 

evaporator air flow, cfm 60.2 60.2 0% 
condenser air flow, cfm 131.0 131.0 0% 

hair, condenser, Btu/hr-oF 4.30 3.63 -15.6 % 

UArr, W/oF 0.91 0.91 0% 

UArz, W/oF 0.97 0.97 0% 

Air flow over the condenser may have been inadvertently (but minimally) affected 

by this experiment, due to the fact that cardboard sheets and towels are not perfectly flat 

and were not placed exactly parallel to the flow direction. 
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A.3.1.5 Door gaskets leaks 

Both freezer and fresh food compartment gasket leaks were induced on the test 

unit. When a compartment gasket is leaking, the heat transfer between that compartment 

and the ambient air is expected to increase due to warm ambient air being allowed into 

the compartment. This might occur when gaskets are old and worn. The faults were 

simulated in the lab simply by placing a number of paper clips between the refrigerator 

body and the appropriate door gasket. The door was then closed on the paper clips, 

causing small openings that allowed warm ambient air into the cold compartments. 

Small or large leaks could be induced by varying the number of clips used. Table A.5 

shows parameter values for each of the gasket leak tests. 

Table A.5 Refrigerator gasket leaks 

parameters base case fresh food delta values, freezer delta values, 
value gasket leak % of base gasket leak % of base 

evaporator air flow, cfm 60.2 60.2 0% 60.2 0% 
condenser air flow, cfm 131.0 131.0 0% 131.0 0% 

hair> condenser, Btu/hr-oF 4.30 4.30 0% 4.30 0% 

UArr, W/oF 0.91 1.08 18.7 % 0.91 0% 

UArzo W/oF 0.97 0.97 0% 1.17 20.6% 

Note that gasket leaks are load faults, as opposed to the system faults described in 

the previous three sections, so the only system variable expected to change during these 

experiments are RunTime and damper position (both are off-line calculations using 

compartment heater powers). See Appendix D for a complete discussion of the 

difference between load and system faults. 

Note that when ambient air enters a compartment, some moisture is also expected 

to enter with it. This extra water vapor may result in a higher rate of frost build up on the 

evaporator. This extra frost is a harmful side effect of a gasket leak, but frost on the 

evaporator is another one of this project's simulated faults, so the vector equation system 

should recognize it if its effect is significant. 
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A.3.2 Air conditioner 

All results shown III this section were obtained at the standard conditions: 

Outdoor temperature = 95°F, indoor temperature = 80°F, indoor relative humidity = 50%. 

In the air conditioner experiments, COP was calculated with the following equation: 

COP = Qcapacity / Wcompressor [A.l] 

Equation [A. 1] was used to analyze whether a test had the desired impact on the 

system. Relevant parameter values and COP were first calculated for a base case test, 

then for each fault experiment the calculated COP was compared to the base value. If it 

was reasonably close to -5% then the experiment was deemed to be successful. An 

experimental Jacobian matrix was then constructed using changes in parameters and 

changes in sensor readings just as in the model simulation cases. The data reduction 

programs used to estimate parameter values are documented by Beaver (1999). 

A.3.2.1 Base case experiments 

As in the refrigerator case, base case data was taken simply by letting the unit run 

with no artificial modifications. These test points are meant to represent fault-free 

operation. Table A.6 shows base case COP and parameter values. 

Table A.6 Air conditioner base case 

parameters base case 
value 

COP 4.31 
evaporator air flow, cfm 1195 

condenser air flow, cfm 2759 
% mass flow thru system 100 
refrigerant charge, Ibm 8.05 

These parameter values are what other fault experiment values are to be compared to. 

The parameter "% mass flow through system" refers to an internal compressor leak, and 

is explained in Section A.3.2.4. 
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A.3.2.2 Evaporator air flow 

The evaporator fan on the test unit is completely variable, so reducing air flow 

was done simply by reducing fan speed. Table A. 7 shows COP and parameter values. 

Table A. 7 Air conditioner blocked evaporator air flow 

parameters base case reduced delta value, % 
value evaporator air of base value 

COP 4.31 4.11 -4.6 % 
evaporator air flow, cfm 1195 1020 -14.6 % 
condenser air flow, cfm 2759 2770 0.4 % 

% mass flow thru system 100 100 0% 
refrigerant charge, Ibm B.05 B.05 0% 

The -4.6% change in COP is close enough to the target value of -5% for this run 

to be acceptable. The key parameter here is evaporator air flow, which was reduced by 

14.6%. Note that this is vastly different from the value of -62% predicted by the alc 

simulation model in Table 2.4. The model's COP value actually increased upon a small 

reduction in evaporator air flow. This implies that the system simulated by the model has 

an evaporator flow rate that is not optimized at 1200 cfm. The model would have to be 

significantly refined before it could be used to generate Jacobians to be used for 

experimental results. 

A.3.2.3 Condenser air flow 

The condenser fan used on the test unit is also completely variable, so reducing air 

flow was done simply by turning down the fan speed. Table A.8 shows COP and 

parameter values. 
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Table A.8 Air conditioner blocked condenser air flow 

parameters base case reduced delta value, % 
value condenser air of base value 

COP 4.31 4.12 -4.4 % 
evaporator air flow, cfm 1195 1195 0% 
condenser air flow, cfm 2759 2187 -20.7 % 

% mass flow thru system 100 100 0% 
refrigerant charge, Ibm 8.05 8.05 0% 

The -4.4% change in COP is close enough to the target value of -5% for this run 

to be acceptable. The key parameter here is condenser air flow, which was reduced by 

20.7%. This is remarkably close to the model-predicted value of -21 % shown in Table 

2.4. 

A.3.2.4 Compressor leak 

This experiment was done to simulate an internal high-to-Iow side leak in a scroll 

compressor. The compressor is hermetic, so a realistic leak couldn't actually be created, 

so a bypass line was installed around the compressor with a needle valve to regulate flow. 

Figure A.2 below shows a schematic diagram of the line. 

leak mass flow 
recirculated 

from evaporator 

Valve 

Compressor 

system mass flow 
to condenser 

Figure A.2 Air conditioner compressor bypass schematic 
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When the valve is opened, a portion of the discharge gas recirculates back to the suction 

side, heats the suction gas, and decreases the compressor's capacity, presumably in a 

similar fashion as would an actual leak. Table A.9 shows COP and parameter values for 

this fault. 

Table A.9 Air conditioner compressor leak 

parameters base case compressor delta value, % 
value leak value of base value 

COP 4.31 4.07 -5.6 % 
evaporator air flow, cfm 1195 1194 -0.0 % 
condenser air flow, cfm 2759 2775 0.6% 

% mass flow thru system 100 90.0 -10.0 % 

refrigerant charge, Ibm 8.05 8.05 0% 

The COP decreased by 5.6%, which is sufficiently close to the target value. An 

explanation for the parameter "% mass flow through system" is as follows: in model 

runs, the key parameter for this fault is 

{(system mass flow) / (system mass flow + mass flow\eaJ} X 100% [A.2] 

where "system mass flow" refers to the non-leaking flow that is circulated as normal. So 

when there is no leak, the parameter value is 100%. Unfortunately with the 

instrumentation present there is no way to know exactly the mass flow that is bypassed 

around the compressor, so the above calculation cannot be made exactly. However, a 

good estimate can be made by assuming that the mass flow rate through the compressor 

is nearly the same in both the base case and fault case. This is not exactly true, as 

bypassed discharge gas will affect the pressure and temperature of the compressor suction 

gas. A correction factor was added to account for difference in densities. This way the 

leak mass flow may be approximated as: 

mass flow\eak;::; {sys. mass flowbase - sys. mass flowwllead X (Pfau\/Pbase) [A.3] 
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This way if the mass flow into the compressor is less dense than in the base case, a good 

estimate is calculated. When a compressor leak was simulated with the model, the 

calculated parameter change given by equation [A2] (as in Table 2.4) is -6.8%. The 

change given by equation [A.3] is -6.5%. These two values are fairly close, so equation 

[A3] should be sufficient for experimental purposes. 

A3.2.5 Low charge 

This experiment simulates the effect of a slow leak in an actual unit. It was 

performed by removing a measured mass of charge from the system, and allowing the 

unit to operate with less than the recommended charge. Table A.IO shows COP and 

parameter values. 

Table Al 0 Air conditioner low charge 

parameters base case low charge delta value, % 
value value of base value 

COP 4.31 4.13 -4.2 % 

evaporator air flow, cfm 1195 1194 -0.0 % 

condenser air flow, cfm 2759 2791 1.2 % 

% mass flow thru system 0 0 0% 

refrigerant charge, Ibm 8.05 6.55 -18.6 % 

The -4.2% change in COP is close enough to the target value of -5% for this run 

to be acceptable. 
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Appendix B 

Jacobian Matrix Issues 

B.1 Matrix Construction 

The Jacobian matrix used in this project is a matrix of first derivatives. Its size is 

M x N, where M is the number of sensor locations being used and N is the number of 

faults to be detected. The matrix takes the form: 

J11 J12 J13 J1N 

J21 J22 

J31 

Where each element represents a derivative: 

J m,n [B.1] 

Theoretically, a derivative element is known precisely at a single point. In this 

project, however, such exact dependencies of variables on operational parameters are not 

known. Therefore point derivatives must be estimated numerically by running a model or 

experiment at two different operating conditions. So in this project, equation [B.1] 

becomes 

J Oxm ~xm 
=--R!--

m,n Bk ~k 
n n 

[B.2] 
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For example, in order to approximate the Jacobian element ax/okl, first the 

system would be simulated using a base case value ofkl to obtain a value for Xl' Then kl 

would be changed to k/ (while all other parameters are held constant) and the system 

would be simulated again, leading to some value Xl" Then the derivative would be 

approximated as 

[B.3] 

For simulation purposes described in Chapter 2, the values of~' are chosen to be values 

that cause the system energy use to increase by an amount ~Ecrit (refrigerator) or system 

COP to decrease by an amount ~COPcrit (air conditioner). 

Note that an implicit assumption of this approach is that the behavior of the 

system between these two operating points is linear. Of course, a system with the 

complexity of a refrigerator or air conditioner is not expected to behave linearly over a 

large range of operation. It is believed, however, that for the purposes of this project the 

operational parameter range of interest is small enough that linearity is a reasonable 

assumption. This assumption was checked using the simulation models and is discussed 

later in Section B.3. 

B.2 Matrix Normalization 

As described in the previous section, each Jacobian matrix element is composed 

of some variable change divided by some parameter change. Unfortunately, simply 

plugging in values of ~xm and ~ to each Jacobian element can lead to numerical 

problems, as well as confusion regarding the different units of each element. For 

example, in order to induce a similar increase in refrigerator energy use, the air flow rate 

over the condenser must decrease by approximately 60 cfm, whereas the heat transfer 

coefficient of the condenser must only decrease by 0.9 Btulhr-OF, a difference of nearly 2 

orders of magnitude. When dissimilar numbers like these are placed in a matrix together, 

an ill-conditioned matrix may result. Some measure of normalization is desired in order 

to obtain useful numerical results. 
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A nonnalization procedure has been chosen that will resolve any numerical 

problems as well as confusion concerning units. A standard 20- nonnally distributed 

uncertainty is assumed to be known for all variable (xnJ measurements. Any Jacobian 

element may therefore be expressed in units of: 

(# of standard deviations change in xnJ / (% change in kJ 

by using the following fonnula: 

Jm,n = {(Xm,fault - Xm,base) / crm} / {((~.fault - ~.base) / ~.base) * lOO%} [B.4] 

As an example of how this method helps keep Jacobian elements on the same 

order, consider an example: 

When the air flow over the condenser is lowered by 60 cfm, the condenser outlet 

temperature rises about 4°F. Plugging in ~(temperature)/~(air flow) gives 

4°F / -60 cfm = -0.0667 °F/cfm. 

Alternatively, when the heat transfer coefficient of the condenser decreases by 0.9 

Btu/hr -of, the compressor outlet temperature rises 3 of. Plugging in 

~(temperature )/ ~(h. t. coefficient) gives 

Placing these two numbers together in a matrix is not recommended, as one is nearly 102 

larger than the other. Assuming cr for a temperature measurement is 0.5°F, and using 

equation [B.2] to first calculate the Jacobian element related to condenser air flow, 

{(4°F) /O.soF} / {(60 - 120)*100% / 120} = -0.16 

and next for the condenser heat transfer example, 

{(3°F) / O.soF} / {(3.29 - 4.l9)*100% / 4.19} = -0.28 
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The quotient of these two answers has been reduced from 50 to less than 2.0! Numbers 

such as these are more agreeable in computational analysis. 

Note that when the Jacobian is normalized with the units demonstrated above, the 

inverse Jacobian will then have inverted units 

(% change in kJ / (# of standard deviations change in xnJ 

Therefore the ~x vector must also be normalized with units of (# of standard deviations 

change in xnJ in order to make the units of the calculated ~k vector (% change in ~). 

The M<: vector could then be normalized in a number of ways, one of which is to divide 

each ~ term its individual ~~crit value (shown in Tables 2.2 and 2.4, for example) so that 

a ~~ calculation of zero means no fault is present, and a calculation of 1.0 means that the 

fault has reached a critical level. 

B.3 Linearity assumption 

As described in section B.1, each Jacobian element is determined with results 

from two system operating points. These parameter values at the base case level and at 

the ~Ecrit or ~COPcrit level can be treated essentially as "limiting" values in this project. 

The system operating point of interest for fault detection about which a derivative should 

be taken lies somewhere between those two values. The Jacobian matrix is essentially a 

linear model of the system's behavior, so it is beneficial to know whether the linearity 

assumption is a good one within the range of interest. Simulation results show that for 

the most part this assumption is acceptable. As an example, refrigerator model runs were 

performed allowing the value of the parameter h"ir cond' to vary from its base case value of 

4.2 down to 2.8 Btu/hr-oF. Figure B.1 shows the response of two important sensor 

locations (condenser refrigerant and air outlet temperatures) within the interval of 

interest. 
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Figure B.I Linearity demonstration, fouled refrigerator condenser 

This plot demonstrates that it is reasonable to approximate these elements 8xrrl8~ 

at any point of interest simply as ~xrrl ~~ because the plots are nearly linear. This type of 

trend was observed for most variables as each fault was simulated. There are occasions 

where this assumption breaks down, however. Figure B.2 shows a similar plot for the air 

conditioner case of low charge. Charge was varied from its base case value down to a 

level that caused a 5% decrease in COP. 
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Figure B.2 Nonlinearity demonstration, air conditioner low charge 
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This plot illustrates an interesting nonlinear situation. Obviously the response of 

the two temperatures is not linear. An explanation for the "crook" in each temperature 

response is that as charge is taken out of the system, condenser subcooling decreases. 

This causes the increase seen in both temperatures, as the liquid line outlet is directly 

downstream of the condenser exit. Note that during the linear increase, the liquid line 

outlet temperature is practically equal to the condenser outlet. This is because the liquid 

line was modeled as adiabatic. At some point as charge is drained from the condenser, 

subcooling gets close enough to zero so that the wall friction causes the refrigerant to 

flash somewhere in the 25-ft. liquid line, leaving the liquid line to enter the TXV in the 2-

phase state. Once there is 2-phase flow in the liquid line, the resulting pressure drop 

causes the refrigerant temperature to decrease as it goes through the rest of the line. Of 

course, as more charge is removed from the system, the condenser exit subcooling 

eventually goes all the way to zero (at approximately 7.5 Ibm. in Figure B.2). 

Figure B.2 serves as a caution against blindly assuming that all sensor responses 

will be nearly linear. There are certain conditions where the system is near some type of 

operational inflection point (such as a phase change) and a slight change in a parameter 

will cause it to cross that point. 

A similar situation may be encountered in systems that have a clogged filter-drier 

located in the liquid line upstream of the TXV. At moderate operating conditions the 

valve would simply open wider to maintain a mass flow rate sufficient to control 

superheat at the desired setting. At more severe high-load conditions, however, the valve 

may hit its fully-open position and still be unable to compensate fully for the obstruction 

in the liquid line. The resulting system response would be easy to detect (increased 

superheat) but the discontinuous nature of the fault and response would be difficult to 

handle within our locally-linear FDD methodology. 
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C.l Introduction 

Appendix C 

Uncertainty Analysis 

The diagnostic system proposed here relies on measurements of certain system 

variables which will indicate whether operational parameters are at their normal values or 

have deviated. Of course in reality every sensor measurement has some inherent 

uncertainty/error. Of particular interest is whether changes in measured variables are 

detectable (greater than measurement uncertainty) at a time when energy use has risen 

beyond its threshold level. In addition to sensor measurements, any Jacobian matrix that 

is constructed experimentally or empirically must consist of measured variables and 

parameter changes that are calculated as functions of measured variables. Hence there is 

also uncertainty associated with the Jacobian (and its inverse). This combination of 

errors in both the Jacobian, J, and the residual vector, ~x, ultimately contributes some 

uncertainty to any parameter change calculation, ~k. That is, in the equation 

[C.l] 

uncertainties in J-1 and ~x mean that there must also be uncertainty in the ~k calculation. 

C.2 Error propagation example 

This section will illustrate the effect of error propagation by following a single 

~~ calculation from start to finish. For simplicity, model-generated results were used in 

this example. Refrigerator model output was generated at the following conditions: 

Ambient temperature = 75°F, freezer temperature = 5°F, fresh food compartment 

temperature = 45°F. A sensor set known to be of high quality was used to detect the six 

system faults (again for simplicity, load faults were omitted in this example). The sensor 

set was chosen based on criteria described in Chapter 3. Table C.I shows the included 

sensors, along with the assumed (20') errors associated with their measurements. 
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Table C.l Variable infonnation for sensor set 

Sensor 20' Uncertainty 

T Shell 1.0 OF 

T liqLineOut 1.0 OF 

TEvaPln 1.0 OF 
Tcomp,n 1.0 OF 

TAcondOut 1.0 OF 
RTca,c 1.0 % 

The Jacobian matrix used for this example was constructed using the sensor set listed 

above and the six (system fault) parameter changes listed in Table 2.2. 

C.2.l Jacobian uncertainty 

As discussed earlier, every element in the Jacobian matrix has some uncertainty 

associated with it because each partial derivative element was calculated as Jrn,n = ~~ 

based on measured (or in this example, simulated) variables. The Jacobian takes the 

fonn: 

J11 J12 J1,6 

J21 J22 

J3,1 

Note that each element in the Jacobian is calculated from nonnalized variables and 

parameters (as discussed in Appendix B), and has units: 

(# of standard deviations change in xJ / (% change in ku). 
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There is an applicable statistical fonnula for finding the uncertainty for this 

quotient of a d(variable) measurement and a d(parameter) estimate (based on variable 

measurements). It is given by Figliola and Beasley (1991) as: 

8J 8J 
U =+ (~'U )2 + (~'U )2 [C.2] 

Jm,n - Ox Xm 8k k. 
ID n 

where the "u" tenns represent 20- measurement uncertainties. Table C.1 lists the assumed 

variable uncertainties (llx,~. For simplicity, parameter change uncertainties (uk,n) were 

assumed to be ±10% of that particular d~ value. For example, according to Table 2.2, 

for the frosted evaporator fault, airflow was reduced by 20%, from 58.4 to 46.4 cfm (& 

value = -12.0 cfm). The 20- uncertainty, 10% of that d value, is 1.2 cfm, which is 2% of 

the original 58.4 cfm. Therefore the stochastic value of ~ is (-20 ± 2)% ofthe base case 

value. This level of accuracy was assumed to be reasonable for carefully controlled 

experiments. 

Continuing the frosted evaporator example, when the airflow was reduced by 

20%, the compressor inlet temperature decreased by 2.8°F (= -5.60-). This particular 

Jacobian element is calculated as (-5.60- / -20% = +0.27 0-/%). The partial derivative 

tenns in equation [C.2] were calculated numerically: This particular element has a 

magnitude of 0.27 0-/%, so by separately perturbing the dx and dk tenns it can be shown 

that aJ/Ox = 0.05 (1/%) and aJ/ak = 0.0135 (0-/%2). Plugging these numbers into equation 

[C.2] results in: 

UJm,n = ±~(O.05(1/%). 20y + (-O.OI35(cr/%2). 2%)2 ~ ±O.IOcr /% 

A Monte Carlo technique was used for further illustration of Jacobian uncertainty. 

A distribution for the same Jacobian element was found by choosing random nonnally 

distributed values of dx within the range (5.6 ± 2) 0- and values of dk within the range 
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(20 ± 2) %, and creating a large number of values for that element, thereby producing a 

distribution centered about the mean value of 0.27, shown below in Figure C.l. 

50 
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40 
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20 
+/- 0.10 range 

10 

o 
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 

Magnitude of Jacobian element, (sigma/%) 

Figure C.l Jacobian element uncertainty distribution 

The figure shows that the distribution is in fact centered about 0.27 and covers a 

2cr range of roughly ±O.l 0 cr/%, confirming the accuracy of the estimate obtained above. 

The results of this analysis indicate that the uncertainty of this Jacobian element (and for 

most elements) is substantial compared to the nominal value. 

Of course, the true utility of the Jacobian matrix comes only after it is inverted, as 

shown in equation [C.l]. Note that each element in the inverse Jacobian has units 

associated with it that consist of 

(% change in ~) / (# of standard deviations change in xnJ 

Each element of the inverse matrix quantifies the percent change in a parameter ~ due to 

a single standard deviation change in a single variable xm. Instead of using more detailed 

statistics equations as in Section C.2.I, a Monte Carlo analysis was the easiest way to 

determine a distribution for an inverse Jacobian element. This was accomplished by 

inverting each Jacobian matrix that was created in the previous step. For example, if 

1000 random values are chosen for ~xm and ~~, then 1000 values are known for each 
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Jacobian element, hence 1000 Jacobians can be produced and inverted. Each element of 

the inverse matrix will then have 1000 different distributed values centered about some 

nominal. This was in fact done for the Jacobian discussed in this Appendix, then (as 

described in Section C.2.2) the stochastic inverse was multiplied by a stochastic ilx 

vector in order to calculate the il~ value of interest (in this case evaporator airflow, to 

continue the previous example). 

C.2.2 Parameter calculation uncertainty 

Consider an example calculation of a single il~. The deterministic equation is 

given by: 

[C.3] 

Equation [C.3] doesn't account for any error, though. After the uncertainty distribution 

for each inverse Jacobian element was found, another Monte Carlo simulation was used 

to evaluate the il~ values from equation [C.l]. The inverse Jacobian matrix must be 

multiplied by the ilx vector, each element of which is a measured variable and has an 

inherent uncertainty of 20", in order to calculate the ilk vector. Values within the 

individual J.t and ilx normal distributions were chosen randomly and multiplied together, 

thereby creating a distribution for each calculated il~ element. To clarify, each il~ was 

calculated using: 

where om is a normally distributed measurement error in ilxm and Bn,m is the error in r l n,m' 

A il~ distribution is found by calculating equation [CAl many times, using independent 

randomly selected valued of on and Bn,m each time. Figure C.2 was produced as such. It 

shows the uncertainty distribution of evaporator air flow using the sensor set listed in 

Table C.l, where the nominal ilk value is -20%. 

81 



50 

~-- Nominal value 
40 

30 

20 

10 

o LL--'--l...J ____ ~_"""" 

-40 -35 -30 -25 -20 -15 -10 -5 o 
Change in evaporator air flow, % 

Figure C.2 Uncertainty distribution for calculated & element 

The plot shows that the calculated fault distribution for the evaporator air flow has a 

value ofapprox. (-20 ± 10) % of the base case value. Figure C.2 illustrates the 

importance of the nominal ~ value being greater than the uncertainty range. 
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Appendix D 

Load versus System Faults 

D.I Introduction 

Two types of faults were observed during the refrigerator study. The first type of 

observed faults were system faults. Most of the faults reported on here fall into this 

category. This type may affect any temperature or pressure along the refrigerant loop, as 

well as compressor run time. An example of this type of fault is a dirty condenser. The 

heat transfer ability of the condenser is reduced, forcing condensing temperature to 

increase, as the system attempts to offset the loss of heat transfer surface area. 

The second type, load faults, does not affect any of the temperatures or pressures 

along the refrigerant loop. This type of fault simply makes the system run longer than 

normal. The type of load fault considered here is a freezer or fresh food compartment 

gasket leak in the refrigerator. A load fault may occur in an air conditioning system as 

well (such as an open door/window or open shades/b1inds), but they were not studied here 

because they are normal occurrences rather than faults. The bad gasket allows more 

ambient heat to leak into the compartment than normal. The compressor then must run 

longer to keep that compartment cool, so this fault would show up analytically in the 

compressor's run time. 

The difference between these two types of faults shows up in the Jacobian matrix. 

The following section describes how. 

D.2 Mathematical difference 

Section D.1 stated that the two load faults did not affect any of the temperatures or 

pressures along the refrigerant loop. When a sensor reading does not change upon fault 

induction, it means that sensor's ~/8~ element in the Jacobian matrix is zero. 

Therefore for the two load faults every axm/8kload element in the Jacobian, with the 

exceptions of 8(RunTime)/8k and 8(damper position)/8k, is expected to be zero. None of 

the other sensors listed in Table 2.1 can give any information related to those two faults. 
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As an illustration, equation [D.1] below shows an expanded version of equation [2.1] and 

includes all 13 of the candidate refrigerator sensor locations. 

J" J,,2 J'6 0 0 fue, 
J2, J22 0 0 fue 2 
J3, 0 0 

&, 
fue3 

0 0 
&2 

fue 4 
0 0 

~k3 

0 0 
&4 [D.1] 

0 0 
&5 

0 0 
&6 

0 0 
&7 

J12 7 J'28 
~k8 

~(RT) 

J13 , J'36 J137 J 13,8 ~(fz) 

Suppose the X i2 sensor is RunTime, the X13 sensor is damper position, and faults k7 

and k8 represent load faults. Only two elements 8(RT)/8k (= J12,7 or J13,7) and 8(fz)/8k (= 

J12,8 or J13,8) in columns 7 and 8 of the Jacobian are nonzero. Hence the only sensors to 

which ilk7 and ilks can contribute are X i2 and x13 • Consider a situation where, in a set of 8 

sensors (to detect 8 faults), RunTime and damper position were not included. In that 

case, the last two rows of the Jacobian matrix in equation [D.1] would not be present 

either, meaning that two columns of the Jacobian would consist entirely of zeros (since 

none of the included sensors would be affected by load faults). Then &7 and &s would 

always be calculated as zero, regardless of how badly a gasket was really leaking. 

This example shows a benefit of the methods for choosing sensors described in 

Chapter 3. Checking the condition number of a matrix will guard against the scenario 

described above. Mathematically speaking, a matrix with an entire column of zeros has 

an infinite condition number, so it would not be chosen as a feasible set of sensors. 

Unfortunately, columns 7 and 8 of equation [D.1] (mostly zeros) tend to increase 

the condition number of the matrix. An option that has been considered is to treat load 

faults and system faults separately. That is, in the case of using 8 sensors to detect 8 
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faults, use a 6x6 Jacobian to detect system faults and a 2x2 Jacobian to detect load faults. 

In a setup like this, system faults would be checked first. If none were found, the second 

Jacobian would then be used to find load faults. The problem with this setup is that the 

ability to detect simultaneous faults would be lost. Ifboth a system and load fault existed 

at the same time, any effect of the system fault on RunTime and/or damper position 

would hinder the ability to detect the load fault. Perhaps this idea deserves more 

consideration and research, but it is disregarded in this report. 
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Appendix E 

Details of RMS Method for Evaluating Sensor Sets 

While discussing the value of the RMS "sum-of-squares" measure for sensor 

contributions, Section 3.3 stated that for a square matrix the lowest possible value is 1. 

This Appendix shows the proof of that statement. If the RMS value is equal to I, it 

implies that every sensor is contributing equally to the detection of each fault. By 

calculating the RMS value for a sensor set, a user can see how close the set is to this ideal 

case. 

Consider the following matrix: 

a1,1 a 1,2 a1,M 

a 2,1 a 2,2 

where each am,n term is the product of ((akn/8xm)~xm)/(&n,crit)' similar to the terms shown 

in equation [3.1], but normalized by the ~kn,crit term. Therefore the sum of any row m is 

actually &nl ~kn = 1. We wish to minimize the quantity (arbitrarily called \f'): 

M N 

'¥ = LL:a!,m [E.l] 
m=l n=l 

subject to the constraints ~ (N total constraints): 

M 

~= "a -1=0 L...J D,ffi 
[E.2] 

m=l 

Equation [E.2] states that each row must sum to 1. This IS true because of the 

normalization of each am,n term discussed above. 
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To simplify this problem, we will minimize '1'2 (and cancel out the square root 

symbol in equation [E.ID rather than '1', as the result will be same. Also in the interests 

of simplification, we will minimize '1'2 for only one row, since each constraint is a row 

constraint. For this task the method of LaGrange multipliers may be used. Stoecker 

(1989) gives a useful description and demonstration of LaGrange multipliers and their 

applications. The general form of the LaGrange multiplier equation is: 

[E.3] 

where A is a LaGrange multiplier of unknown value. From equation [E. 1], 

[E.4] 

and from equation [E.2], 

V~=l [E.S] 

for all an,m. The accompanying LaGrange equations (M equations per row) are: 

2an,1 - 1.(1) = 0 

[E.6] 

Solving equations [E.2] and [E.6] simultaneously gives the minimum value of '1'2 as 

1/(M2) for a single row, when all of the an,m elements are equal to 11M. This illustrates 

that the minimum value of '1' is: 

'1'rnin = N*(IIM) [E.7] 

Equation [E.7] is generalized for all matrices. In the case of square matrix where N=M, 

'1'min = 1. 
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Appendix F 

Simulation Model Changes 

The model that was used to simulate air conditioner faults was developed by 

Mullen, et al. (1998). The original model was unable to simulate the two compressor 

faults considered in this study: low motor efficiency and compressor leakage. Therefore 

some equations and variables had to be added to accommodate these simulations. 

F.l Low motor efficiency 

The motor within the compressor could run inefficiently at times and demand 

more power than should be necessary to perform the same amount of compression work. 

The consequence ofthis fault would be extra heat generated by the motor. This would in 

tum heat the compressor's plenum gas, oil, and shell. In order to simulate this fault, a 

parameter was added to an existing equation. The parameter is called "betapwr" and is 

simply a scaling factor that is multiplied by the compressor power term: 

PwrComp pwrmap(tsatincomp,tsatoutcomp,pc)*betapwr 

where "pwrmap" is function call which calculates compressor power based on 

compressor inlet and outlet saturation temperatures (which are effectively evaporating 

and condensing pressures). A model user can leave the compressor power unchanged by 

setting betapwr = 1.0, or simulate an inefficient motor by setting betapwr > 1.0. When 

the motor draws more power than normal, it will dissipate more heat than normal, as seen 

in the following energy balance on the motor: 

PwrComp = qMotor + Pwrshaft 

where "Pwrshaft" is the mechanical work needed to tum the shaft and "qMotor" is the 

extra power dissipated as heat rejected to the plenum gas and oil. Both these terms were 

added to the model, but they appear in the same equation. Another new equation will be 
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introduced in Section F.2 to recover both terms. Figure F.l below shows a diagram that 

illustrates these motor terms. 

F.2 Compressor leak 

Appendix A described the compressor bypass line that was installed in the 

experimental setup. This is an artificial representation of the fault, though. An actual 

high-to-Iow side leak in a scroll compressor would actually happen within the sealed 

compressor shell as shown in Figure F .1. 

compressor suction 

suction port 
mass flow 
=wsp 

Plenum 
chamber 

shaft 

Motor 

discharge line 
mass flow=w 

plenum = 
wleakext 

plenum 
gas 

powerm 

Figure F.l Compressor simulation schematic 

Refrigerant could actually leak past the plate separating the high and low sides of 

the compressor. This type of leak is difficult to model in both simulation and experiment, 

so the model simulation refrigerant loop was modified essentially in the same way as the 
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experimental loop. Figure F.2 shows a schematic of the compressor region of the loop 

that is simulated by the model. Note the similarity to Figure A.2. 

wleakext = leaking mass flow 

wsp = mass flow through camp. 

w = system mass flow 

Compressor 

from evaporator 

Figure F.2 Compressor simulation bypass line 

This fault was modeled simply by specifying how much mass flow was leaking. 

A parameter called "wleakext" was added to the model. A mass flow balance at either of 

the bypass line junctions in Figure F.2 gives three mass flow rates: total system mass 

flow (w), leakage to plenum (wleakext), and the sum of those, mass flow through the 

compressor (wsp). These three terms combine to form the equation: 

w = wsp - wleakext 

where "wsp," the mass flow through the compressor suction port, is a new variable. An 

energy balance at the same junction gives: 

w*hlO + wleakext*hO = wsp*hlOcorr 

where "hlOcorr" represents the corrected compressor suction enthalpy, which is a bit 

higher than normal due to the leak. 

In order to recover the "qMotor" term introduced III Section F.1, an energy 

balance was done on the plenum gas: 
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qComp + wsp*hsp = qMotor + wsp*hlOcorr 

where "hsp" is the enthalpy of the mass flow through the suction port, assumed to be at 

the temperature of the plenum gas. Since the temperature of the plenum gas is unknown, 

an assumption was made that it was at the same temperature as the compressor shell and 

at the same pressure as the suction gas: 

hsp = hpt(plO,Tshell) 

This assumption seems reasonable because the inside of the shell is continuously being 

splattered with oil droplets which also come into contact with the plenum gas, so the heat 

transfer resistance on the inside to the hot oil and gas is probably much less than that on 

the outside to the air. 
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G.t Simulation results 

Appendix G 

Refrigerator Results 

Chapter 4 discussed reasons that refrigerator results are addresses seperately here 

in this Appendix. They are presented here just as air conditioner results were presented 

in Chapter 4. 

G.I.I Single faults 

Figures 3.8 and 3.9 showed that the refrigerator Jacobian producing the lowest 

calculation error (about 25%) has a condition number of approx. 37 and an RMS value of 

2.6. Table G.1 below lists the sensor set used to construct this Jacobian. 

Table G.I Refrigerator set of 8 sensors with lowest calculation error 

Condo # = 37 RMS =2.6 
TOiS 

TCondOut 
TEvaPln 

TEvapOut 
Tcomp'n 

TAcondOut 
RunTime 

damper position 

It was stated that the average calculation error (described in Section 3.4.3) for this 

sensor set is approximately 25%. Table G.2 shows the numbers from which that figure 

(25%) was calculated. It lists the width of each 90% confidence interval (see Figure 3.7 

for graphical representation of confidence interval) in the form: ~(parameter) = [nominal 

value ± liz width ofC.!.] %. Note that all of the nominal values in the table are expected 

to be exact (the same critical fault magnitudes as listed in Table 2.2). The reason is that 

the inverse Jacobian .... 1 was multiplied by the same set of Ax vectors that was used to 

create the Jacobian J in the first place. The 90% confidence intervals are simply an 
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indication of how much uncertainty is involved even when the nominal calculated value 

is perfect. 

Table G.2 Set of90% confidence intervals, best set of 8 sensors 

frosted fouled 

area 
mdot map 0 12 0 11 0 11 0 11 

power map 0 0 4 0 5 0 5 0 4 
evap airflow 0 17 0 0 13 0 14 0 13 

cond hair 0 17 0 15 0 14 0 14 0 14 0 15 
cond airflow 0 9 0 9 0 9 8 0 8 ;;50 8 0 0 7 

UAff 0 25 0 23 0 22 0 22 0 23 0 22 0 22 
UAfz 0 27 0 26 0 24 0 24 0 24 0 23 7 25 

Each column of Table G.2 (low evap air flow, low cond air flow, etc.) represents 

the result of the inverse Jacobian multiplied by a single ilx vector, generated by the 

simulation of that particular fault. The left part of each column shows the nominal 

calculated value of each parameter, the right part shows the [±] value, or Yz the width of 

the 90% confidence interval. The shaded boxes highlight the parameter calculations that 

are expected to be nonzero, based on the fault present. Refer to Section 4.1.1 for an 

example showing how to read the table effectively. 

This Jacobian's average calculation error (25%) was calculated by averaging the 

width of every confidence interval (= 2 x [± valueD. Note that, as seen in air conditioner 

results, the [±] values for each individual calculated parameter are fairly consistent no 

matter which particular fault has been simulated. For example, regardless of which fault 

is simulated in Table G.2, the [±] value for the UAfz parameter is always between 23% 

and 27%. Unfortunately, the nominal value ofUAfz in the case of a freezer gasket leak is 

+7%. This implies that, even when using the best set of 8 sensors, there are two possible 

negative occurrences: 1) there is no fault present, but due to the width of the confidence 

interval a false positive is generated; and 2) a freezer gasket leak has reached a critical 

level, but there is the distinct possibility that the FDD system will not recognize a fault at 
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all. The same type of conclusion can also be seen in the case of a worn compressor and a 

fresh food gasket leak. In the case of a fault where ~t > e/2 the confidence interval 

width], neither of the situations mentioned above would ever happen. There would still 

be the possibility of early/late detection (as discussed in Section 3.2.3), but in that case 

the question is not whether a fault is present, but what level of severity it is at. 

The next issue of interest is the effect that the addition of extra sensors has on 

fault detectability. With this goal in mind, an exhaustive search was performed of all 

possible sets of 9 sensors in search of the one with the lowest average calculation error. 

Figures G.1 and G.2 below show average calculation error vs. condition number and 

RMS value, respectively, for sets of 9 sensors. 
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Figure G.1 Average calculation error vs. condition number (refrig, 9 sensors) 

The same trend is apparent here as was in Figure 3.8, but more sets seem to be 

clustered toward the lower left comer of the plot (note that the y-axis is from 0-50, where 

in Figure 3.8 it was 0-100). This makes sense, as all sensor sets will benefit from the 

inclusion of an extra sensor. 
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Figure G.2 Average calculation error vs. RMS value (refrig, 9 sensors) 

Again, this plot's shape is similar to that of Figure 3.9. The sensor set that shows 

the lowest calculation error (approximately 14%) is shown in Table G.3 below. 

Table G.3 Refrigerator set of9 sensors with lowest calculation error 

Condo # = 35 RMS =2.5 

TDis 

TCondOut 
T LiqLineOut 

TEvaPln 
TEvapOut 

Tcomp'n 
TAcondOut 
RunTime 

damper position 

The average error went down about 9% by adding one sensor. Note that the set is 

the same as that shown in Table G.1, but with the liquid line outlet temperature added. 

The reason that detection accuracy improved is because the liquid line outlet and 

condenser outlet temperatures are closely related (they are separated only by the nearly 

adiabatic liquid line). The addition of this redundant sensor took half of the burden off 

the condenser outlet sensor, allowing more equal contributions, as discussed in Section 
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3.5). The addition of one sensor helped detection accuracy quite significantly, thus one 

might wonder how well the FDD method could perform with even more sensors. To 

answer this question, all 13 of the candidate sensor locations (listed in Table 2.1) were 

used to detect faults. When all 13 sensors were used, an average calculation error of 

9.1 % resulted. It seems that the addition of one extra sensor goes a long way toward 

increasing detection accuracy, but the value of extra sensors drops quickly after the first, 

at least for this particular refrigerator. 

G.l.2 Multiple faults 

The refrigerator sensor set listed in Table G.l was used as a further test of the 

ability of the FDD method to detect simultaneous multiple faults. Four separate 

simulation results are listed below in Table GA. They were chosen with the purpose of 

representing simultaneous system faults, simultaneous load faults, and one of each. The 

four cases listed refer to the following parameter conditions: 

Case 1: 

Case 2: 

Case 3: 

Case 4: 

Evaporator air flow (-17%) and condenser air flow (-50%) 

Captube exit area (-14%) and freezer VA (+ 13 %) 

Fresh food compartment VA (+ 15%) and freezer VA (+ 13 %) 

Captube exit area (-14%) and condenser air flow (-33%) 

Table GA Set of90% confidence intervals, multiple fault cases 

Case #: 1 2 3 4 

calculated Akn. % nom nom +/. 
Gap exit area ·1'5 3 

mass flow map -1 -3 16 -2 
power map -1 7 0 
evap airflow 2 21 -2 24 

Gond hair -3 22 25 
Gond airflow 

UAff 

UAfz -2 
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The two fault values are highlighted in each column of Table GA for easier 

reference. The results show good news and bad. The uncertainty ranges for each fault 

are similar to those shown in Table G.2 for single faults, so the occurrence of extra faults 

does not seem to affect the width of the ~kcalc 90% confidence interval, with the 

exception of the two load fault UA parameters. The width of their confidence intervals 

have grown significantly from the single fault cases of Table G.2. 

An interesting case occurs in column 1 of Table G.2. The parameter "evap air 

flow" shows equal magnitudes for both the nominal and [±] values. In this case there 

remains a 5% chance of a false positive indication, as the [±] value is based on a 90% 

confidence interval. 

Most of the calculated fault parameter values are close to what was specified (for 

example, captube exit area in cases 2 and 4, evaporator airflow in case 1). A couple are 

not as close, such as UAfz in case 2 (under-predicted at +7%, should be +13%) and 

condenser airflow in case 4 (also under-predicted at -23%, should be -33%). Some of the 

parameter calculations that are expected to be zero are not as close to zero as in the single 

fault cases (see Table G.2), for example UAfz and evaporator airflow in case 4. 

It seems that in the case of multiple faults some are still as detectable as in the 

single fault cases, but others (notably load faults, which were not detectable even in the 

single fault cases) are negatively affected by the presence of other faults and nonlinearity 

effects. 

G.2 Experimental results 

A number of the faults that were simulated with models were also induced 

experimentally in the laboratory. Table G.5 below lists these faults for the refrigerator. 

Table G.5 Experimentally induced faults (refrig) 

Refriger~tor 
frosted evaporator 

reduced condenser air flow 
fouled condenser 

fresh food gasket leak 
freezer gasket leak 
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Appendix A describes each fault experiment that was performed and lists the 

calculated parameter values for each test. Table G.6 below lists the "critical" fault levels 

(parameter changes) observed in experiments. These parameter values, along with 

variable values, were used to construct experimental Jacobian matrices in the same 

fashion as was done with model results. 

Table G.6 Experimental critical fault parameter changes (refrig) 

Refrigerator <' ••• ,.'< 

parameter Akcrit 
evaporator air flow -20% 
condenser air flow -32% 

hair cond -16% 
fresh food UA 19% 

freezer UA 21% 

Experimental data for refrigerator runs was taken under the following conditions: 

ambient temperature = 75°F, freezer temperature = 5°F, fresh food compartment 

temperature = 45°F. These were chosen because they represent a real refrigerator's 

typical operating condition. 

As in the air conditioner case, an exhaustive search was performed on all possible 

sets of 5 sensors for those with the lowest condition number, RMS value, and average 

calculation error. The following plots are similar to those seen in Chapter 3. Figure G.3 

shows RMS value as a function of condition number. 
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Figure G.3 RMS value vs. condition number (refrig experiments) 

It appears that the same type of trend that was seen in simulation results is seen 

here as well. There is a general trend of the best conditioned matrices also having the 

lower RMS values, but there are also many sets with large condition numbers that have 

low RMS values. Figure G.4 shows average calculation error (described in Section 3.4) 

as a function of Jacobian condition number. Figure G.5 shows average calculation error 

as a function of RMS value. 
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Figure G.4 Average calculation error vs. condition number (refrig experiments) 
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Figure G.5 Average calculation error vs. RMS value (refrig experiments) 

Both Figures GA and G.5 show results similar to those seen III simulations. 

Namely, that the matrices with the lowest values of condition number and RMS tend to 

give more accurate FDD results. These results were used to construct a 5x5 Jacobian for 

detecting the five refrigerator faults listed in Table G.5. The five sensors used to 

construct the Jacobian were chosen such that the Jacobian gives the minimum average 

calculation error. Table G.7 lists the sensor set used. 

Table G.7 Experimental refrigerator sensor set 

5 refrigerator sensors 
Cond # = 24.8, RMS = 2.24 

WComp 
Tois 

TCompln 
RunTime 

damper position 

The detection accuracy of this Jacobian was tested as in Section 4.1, with 90% 

confidence intervals. Table G.8 below shows how accurately each fault (and non-fault) 

was detected. 
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Table G.8 Set of90% confidence intervals, refrigerator experiments 

The width of the confidence intervals for the three system faults look to compare 

well with those predicted with model results. The load faults, however, have wider 

distributions than observed in the model case. This may be explained by inconsistency in 

the RunTime and damper position experimental "sensors." Recall that in the steady-state 

experiments, actual compressor RunTime was I 00% and fz was constant. Calculations 

were made off-line using readings from compartment heaters to estimate values ofRTcalc 

and fz,calc (see Chapter 2 for a description of the heaters and their purpose). 

Unfortunately, as discussed by Kelman and Bullard (1999), the compartment heaters used 

in the refrigerator experiments gave consistently suspect readings. For this reason, no 

finn conclusions could be drawn, so the question was investigated using the ale test 

facility (as reported in Chapter 4), which had more accurate instrumentation. 

101 


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

