174,864 research outputs found

    Measuring the Effects of Artificial Viscosity in SPH Simulations of Rotating Fluid Flows

    Full text link
    A commonly cited drawback of SPH is the introduction of spurious shear viscosity by the artificial viscosity term in situations involving rotation. Existing approaches for quantifying its effect include approximate analytic formulae and disc-averaged be- haviour in specific ring-spreading simulations, based on the kinematic effects produced by the artificial viscosity. These methods have disadvantages, in that they typically are applicable to a very small range of physical scenarios, have a large number of simplifying assumptions, and often are tied to specific SPH formulations which do not include corrective (e.g., Balsara) or time-dependent viscosity terms. In this study we have developed a simple, generally applicable and practical technique for evaluating the local effect of artificial viscosity directly from the creation of specific entropy for each SPH particle. This local approach is simple and quick to implement, and it al- lows a detailed characterization of viscous effects as a function of position. Several advantages of this method are discussed, including its ease in evaluation, its greater accuracy and its broad applicability. In order to compare this new method with ex- isting ones, simple disc flow examples are used. Even in these basic cases, the very roughly approximate nature of the previous methods is shown. Our local method pro- vides a detailed description of the effects of the artificial viscosity throughout the disc, even for extended examples which implement Balsara corrections. As a further use of this approach, explicit dependencies of the effective viscosity in terms of SPH and flow parameters are estimated from the example cases. In an appendix, a method for the initial placement of SPH particles is discussed which is very effective in reducing numerical fluctuations.Comment: 15 pages, 9 figures, resubmitted to MNRA

    Performance of thermal barrier coatings in high heat flux environments

    Get PDF
    Thermal barrier coatings were exposed to the high temperature and high heat flux produced by a 30 kW plasma torch. Analysis of the specimen heating rates indicates that the temperature drop across the thickness of the 0.038 cm ceramic layer was about 1100 C after 0.5 sec in the flame. An as-sprayed ZrO2-8%Y2O3 specimens survived 3000 of the 0.5 sec cycles with failing. Surface spalling was observed when 2.5 sec cycles were employed but this was attributed to uneven heating caused by surface roughness. This surface spalling was prevented by smoothing the surface with silicon carbide paper or by laser glazing. A coated specimen with no surface modification but which was heat treated in argon also did not surface spall. Heat treatment in air led to spalling in as early as 2 cycle from heating stresses. Failures at edges were investigated and shown to be a minor source of concern. Ceramic coatings formed from ZrO2-12%Y2O3 or ZrO2-20%Y2O3 were shown to be unsuited for use under the high heat flux conditions of this study

    The Hilbert Action in Regge Calculus

    Get PDF
    The Hilbert action is derived for a simplicial geometry. I recover the usual Regge calculus action by way of a decomposition of the simplicial geometry into 4-dimensional cells defined by the simplicial (Delaunay) lattice as well as its dual (Voronoi) lattice. Within the simplicial geometry, the Riemann scalar curvature, the proper 4-volume, and hence, the Regge action is shown to be exact, in the sense that the definition of the action does not require one to introduce an averaging procedure, or a sequence of continuum metrics which were common in all previous derivations. It appears that the unity of these two dual lattice geometries is a salient feature of Regge calculus.Comment: 6 pages, Plain TeX, no figure

    A Comparison of Intermediate Mass Black Hole Candidate ULXs and Stellar-Mass Black Holes

    Full text link
    Cool thermal emission components have recently been revealed in the X-ray spectra of a small number of ultra-luminous X-ray (ULX) sources with L_X > 1 E+40 erg/s in nearby galaxies. These components can be well fitted with accretion disk models, with temperatures approximately 5-10 times lower than disk temperatures measured in stellar-mass Galactic black holes when observed in their brightest states. Because disk temperature is expected to fall with increasing black hole mass, and because the X-ray luminosity of these sources exceeds the Eddington limit for 10 Msun black holes (L_Edd = 1.3 E+39 erg/s), these sources are extremely promising intermediate-mass black hole candidates (IMBHCs). In this Letter, we directly compare the inferred disk temperatures and luminosities of these ULXs, with the disk temperatures and luminosities of a number of Galactic black holes. The sample of stellar-mass black holes was selected to include different orbital periods, companion types, inclinations, and column densities. These ULXs and stellar-mass black holes occupy distinct regions of a L_X -- kT diagram, suggesting these ULXs may harbor IMBHs. We briefly discuss the important strengths and weaknesses of this interpretation.Comment: 4 pages, 2 color figures, uses emulateapj.sty and apjfonts.sty, subm. to ApJ

    Parametric study of advanced multistage axial-flow compressors

    Get PDF
    Axial flow compressor study to increase pressure ratio and reduce overall lengt
    corecore