6,292 research outputs found

    Strategies for Parallel Markup

    Full text link
    Cross-referenced parallel markup for mathematics allows the combination of both presentation and content representations while associating the components of each. Interesting applications are enabled by such an arrangement, such as interaction with parts of the presentation to manipulate and querying the corresponding content, and enhanced search indexing. Although the idea of such markup is hardly new, effective techniques for creating and manipulating it are more difficult than it appears. Since the structures and tokens in the two formats often do not correspond one-to-one, decisions and heuristics must be developed to determine in which way each component refers to and is referred to by components of the other representation. Conversion between fine and coarse grained parallel markup complicates ID assignments. In this paper, we will describe the techniques developed for \LaTeXML, a \TeX/\LaTeX to XML converter, to create cross-referenced parallel MathML. While we do not yet consider \LaTeXML's content MathML to be useful, the current effort is a step towards that continuing goal

    VMEXT: A Visualization Tool for Mathematical Expression Trees

    Full text link
    Mathematical expressions can be represented as a tree consisting of terminal symbols, such as identifiers or numbers (leaf nodes), and functions or operators (non-leaf nodes). Expression trees are an important mechanism for storing and processing mathematical expressions as well as the most frequently used visualization of the structure of mathematical expressions. Typically, researchers and practitioners manually visualize expression trees using general-purpose tools. This approach is laborious, redundant, and error-prone. Manual visualizations represent a user's notion of what the markup of an expression should be, but not necessarily what the actual markup is. This paper presents VMEXT - a free and open source tool to directly visualize expression trees from parallel MathML. VMEXT simultaneously visualizes the presentation elements and the semantic structure of mathematical expressions to enable users to quickly spot deficiencies in the Content MathML markup that does not affect the presentation of the expression. Identifying such discrepancies previously required reading the verbose and complex MathML markup. VMEXT also allows one to visualize similar and identical elements of two expressions. Visualizing expression similarity can support support developers in designing retrieval approaches and enable improved interaction concepts for users of mathematical information retrieval systems. We demonstrate VMEXT's visualizations in two web-based applications. The first application presents the visualizations alone. The second application shows a possible integration of the visualizations in systems for mathematical knowledge management and mathematical information retrieval. The application converts LaTeX input to parallel MathML, computes basic similarity measures for mathematical expressions, and visualizes the results using VMEXT.Comment: 15 pages, 4 figures, Intelligent Computer Mathematics - 10th International Conference CICM 2017, Edinburgh, UK, July 17-21, 2017, Proceeding

    Revealing the timing of ocean stratification using remotely sensed ocean fronts

    Get PDF
    Stratification is of critical importance to the circulation, mixing and productivity of the ocean, and is expected to be modified by climate change. Stratification is also understood to affect the surface aggregation of pelagic fish and hence the foraging behaviour and distribution of their predators such as seabirds and cetaceans. Hence it would be prudent to monitor the stratification of the global ocean, though this is currently only possible using in situ sampling, profiling buoys or underwater autonomous vehicles. Earth observation (EO) sensors cannot directly detect stratification, but can observe surface features related to the presence of stratification, for example shelf-sea fronts that separate tidally-mixed water from seasonally stratified water. This paper describes a novel algorithm that accumulates evidence for stratification from a sequence of oceanic front maps, and discusses preliminary results in comparison with in situ data and simulations from 3D hydrodynamic models. In certain regions, this method can reveal the timing of the seasonal onset and breakdown of stratification

    The imprints of AGN feedback within a supermassive black hole's sphere of influence

    Get PDF
    We present a new 300 ks Chandra observation of M87 that limits pileup to only a few per cent of photon events and maps the hot gas properties closer to the nucleus than has previously been possible. Within the supermassive black hole's gravitational sphere of influence, the hot gas is multiphase and spans temperatures from 0.2 to 1 keV. The radiative cooling time of the lowest temperature gas drops to only 0.1-0.5 Myr, which is comparable to its free fall time. Whilst the temperature structure is remarkably symmetric about the nucleus, the density gradient is steep in sectors to the N and S, with ρr1.5±0.1\rho{\propto}r^{-1.5\pm0.1}, and significantly shallower along the jet axis to the E, where ρr0.93±0.07\rho{\propto}r^{-0.93\pm0.07}. The density structure within the Bondi radius is therefore consistent with steady inflows perpendicular to the jet axis and an outflow directed E along the jet axis. By putting limits on the radial flow speed, we rule out Bondi accretion on the scale resolved at the Bondi radius. We show that deprojected spectra extracted within the Bondi radius can be equivalently fit with only a single cooling flow model, where gas cools from 1.5 keV down below 0.1 keV at a rate of 0.03 M_{\odot}/yr. For the alternative multi-temperature spectral fits, the emission measures for each temperature component are also consistent with a cooling flow model. The lowest temperature and most rapidly cooling gas in M87 is therefore located at the smallest radii at ~100 pc and may form a mini cooling flow. If this cooling gas has some angular momentum, it will feed into the cold gas disk around the nucleus, which has a radius of ~80 pc and therefore lies just inside the observed transition in the hot gas structure
    corecore