127,854 research outputs found
Orbiter windward surface entry Heating: Post-orbital flight test program update
Correlations of orbiter windward surface entry heating data from the first five flights are presented with emphasis on boundary layer transition and the effects of catalytic recombination. Results show that a single roughness boundary layer transition correlation developed for spherical element trips works well for the orbiter tile system. Also, an engineering approach for predicting heating in nonequilibrium flow conditions shows good agreement with the flight test data in the time period of significant heating. The results of these correlations, when used to predict orbiter heating for a high cross mission, indicate that the thermal protection system on the windward surface will perform successfully in such a mission
Sharp bounds on enstrophy growth in the viscous Burgers equation
We use the Cole--Hopf transformation and the Laplace method for the heat
equation to justify the numerical results on enstrophy growth in the viscous
Burgers equation on the unit circle. We show that the maximum enstrophy
achieved in the time evolution is scaled as , where
is the large initial enstrophy, whereas the time needed for
reaching the maximal enstrophy is scaled as . These bounds
are sharp for sufficiently smooth initial conditions.Comment: 12 page
Dubious decision evidence and criterion flexibility in recognition memory.
When old-new recognition judgments must be based on ambiguous memory evidence, a proper criterion for responding "old" can substantially improve accuracy, but participants are typically suboptimal in their placement of decision criteria. Various accounts of suboptimal criterion placement have been proposed. The most parsimonious, however, is that subjects simply over-rely on memory evidence - however faulty - as a basis for decisions. We tested this account with a novel recognition paradigm in which old-new discrimination was minimal and critical errors were avoided by adopting highly liberal or conservative biases. In Experiment 1, criterion shifts were necessary to adapt to changing target probabilities or, in a "security patrol" scenario, to avoid either letting dangerous people go free (misses) or harming innocent people (false alarms). Experiment 2 added a condition in which financial incentives drove criterion shifts. Critical errors were frequent, similar across sources of motivation, and only moderately reduced by feedback. In Experiment 3, critical errors were only modestly reduced in a version of the security patrol with no study phase. These findings indicate that participants use even transparently non-probative information as an alternative to heavy reliance on a decision rule, a strategy that precludes optimal criterion placement
Testing the Role of Technical Information in Public Risk Perception
It is widely believed that more detail about health effects and likely exposure routes is apt to reduce citizens\u27 concerns about low-probability Risks. The authors\u27 study suggests that providing such detail may not be as useful as, e.g., addressing public concerns and keeping citizens current on officials\u27 actions
Jewish Community Study of New York: 2011 Special Report on Poverty
The sheer scale of needs associated with being poor or near poor dwarfs the resources of even the largest Jewish community in the United States. One is tempted to believe that the scale of need is so vast that the Jewish community should abandon this field to others.Yet since the earliest days of Jewish communal life in New York, the organized Jewish community has accepted its responsibilities to care for those in need. Even since the New Deal, when the federal government took on the primary role of providing a societal safety net, the Jewish community has been active in providing philanthropic support and services for poor and near-poor Jews.The numbers of poor and near-poor Jewish households, the enormous increase in the number of these households over the past 20 years, and the diverse groups affected by poverty create an imperative for an extraordinary response -- from government, the voluntary sector, the philanthropic sector, and all segments of society. These findings suggest that the organized Jewish community needs to take a hard look at current planning, advocacy, service delivery, and resource investment
Nuclear fusion induced by X-rays in a crystal
The nuclei that constitute a crystalline lattice, oscillate relative to each
other with a very low energy that is not sufficient to penetrate through the
Coulomb barriers separating them. An additional energy, which is needed to
tunnel through the barrier and fuse, can be supplied by external
electromagnetic waves (X-rays or the synchrotron radiation). Exposing to the
X-rays the solid compound LiD (lithium-deuteride) for the duration of 111
hours, we have detected 88 events of the nuclear fusion d+Li6 ---> Be8*. Our
theoretical estimate agrees with what we observed. One of possible applications
of the phenomenon we found, could be the measurements of the rates of various
nuclear reactions (not necessarily fusion) at extremely low energies
inaccessible in accelerator experiments.Comment: 27 pages, 12 figures; submitted to Phys. Rev. C on 28 October 201
Quasicontinuum Models of Interfacial Structure and Deformation
Microscopic models of the interaction between grain boundaries (GBs) and both
dislocations and cracks are of importance in understanding the role of
microstructure in altering the mechanical properties of a material. A recently
developed mixed atomistic and continuum method is extended to examine the
interaction between GBs, dislocations and cracks. These calculations elucidate
plausible microscopic mechanisms for these defect interactions and allow for
the quantitative evaluation of critical parameters such as the stress to
nucleate a dislocation at a step on a GB and the force needed to induce GB
migration.Comment: RevTex, 4 pages, 4 figure
Quasicontinuum simulation of fracture at the atomic scale
We study the problem of atomic scale fracture using the recently developed quasicontinuum method in which there is a systematic thinning of the atomic-level degrees of freedom in regions where they are not needed. Fracture is considered in two distinct settings. First, a study is made of cracks in single crystals, and second, we consider a crack advancing towards a grain boundary (GB) in its path. In the investigation of single crystal fracture, we evaluate the competition between simple cleavage and crack-tip dislocation emission. In addition, we examine the ability of analytic models to correctly predict fracture behaviour, and find that the existing analytical treatments are too restrictive in their treatment of nonlinearity near the crack tip. In the study of GB-crack interactions, we have found a number of interesting deformation mechanisms which attend the advance of the crack. These include the migration of the GB, the emission of dislocations from the GB, and deflection of the crack front along the GB itself. In each case, these mechanisms are rationalized on the basis of continuum mechanics arguments
- …