136,550 research outputs found

    An efficient, simple dialyzer

    Get PDF
    Easily assembled, efficient, countercurrent, sandwich-type barrier dialyzer was developed. Dialyzer contains six blood chambers that provide 500 sq cm membrane area. Design membranes are cuprammonium cellulose film. Unit performance was compared with thirteen other dialyzers

    Electromagnetic Form Factors and Charge Densities From Hadrons to Nuclei

    Full text link
    A simple exact covariant model in which a scalar particle is modeled as a bound state of two different particles is used to elucidate relativistic aspects of electromagnetic form factors. The model form factor is computed using an exact covariant calculation of the lowest-order triangle diagram and shown to be the same as that obtained using light-front techniques. The meaning of transverse density is explained using coordinate space variables, allowing us to identify a true mean-square transverse size directly related to the form factor. We show that the rest-frame charge distribution is generally not observable because of the failure to uphold current conservation. Neutral systems of two charged constituents are shown to obey the lore that the heavier one is generally closer to the transverse origin than the lighter one. It is argued that the negative central charge density of the neutron arises, in pion-cloud models, from pions of high longitudinal momentum. The non-relativistic limit is defined precisely and the ratio of the binding energy to that of the mass of the lightest constituent is shown to govern the influence of relativistic effects. The exact relativistic formula for the form factor reduces to the familiar one of the three-dimensional Fourier transform of a square of a wave function for a very limited range of parameters. For masses that mimic the quark-di-quark model of the nucleon we find substantial relativistic corrections for any value of Q2Q^2. A schematic model of the lowest s-states of nuclei is used to find that relativistic effects decrease the form factor for light nuclei but increase the form factor for heavy nuclei. Furthermore, these states are strongly influenced by relativity.Comment: 18 pages, 11 figure

    Shapes of the Nucleon

    Full text link
    Previously defined spin-dependent quark densities that are matrix elements of specific density operators in proton states of definite spin-polarization generally have an infinite variety of non-spherical shapes. The present application is concerned with both charge and matter densities. We show that the Gross & Agbakpe model nucleon harbors an interesting variety of non-spherical shapes.Comment: 8 pages 3 figure

    The influence of strange quarks on QCD phase diagram and chemical freeze-out: Results from the hadron resonance gas model

    Full text link
    We confront the lattice results on QCD phase diagram for two and three flavors with the hadron resonance gas model. Taking into account the truncations in the Taylor-expansion of energy density ϵ\epsilon done on the lattice at finite chemical potential μ\mu, we find that the hadron resonance gas model under the condition of constant ϵ\epsilon describes very well the lattice phase diagram. We also calculate the chemical freeze-out curve according to the entropy density ss. The ss-values are taken from lattice QCD simulations with two and three flavors. We find that this condition is excellent in reproducing the experimentally estimated parameters of the chemical freeze-out.Comment: 5 pages, 3 figures and 1 table Talk given at VIIIth international conference on ''Strangeness in Quark Matter'' (SQM 2004), Cape Town, South Africa, Sep. 15-20 200

    Authorization and access control of application data in Workflow systems

    Get PDF
    Workflow Management Systems (WfMSs) are used to support the modeling and coordinated execution of business processes within an organization or across organizational boundaries. Although some research efforts have addressed requirements for authorization and access control for workflow systems, little attention has been paid to the requirements as they apply to application data accessed or managed by WfMSs. In this paper, we discuss key access control requirements for application data in workflow applications using examples from the healthcare domain, introduce a classification of application data used in workflow systems by analyzing their sources, and then propose a comprehensive data authorization and access control mechanism for WfMSs. This involves four aspects: role, task, process instance-based user group, and data content. For implementation, a predicate-based access control method is used. We believe that the proposed model is applicable to workflow applications and WfMSs with diverse access control requirements

    Mapping Atomic Motions with Electrons: Toward the Quantum Limit to Imaging Chemistry

    Get PDF
    Recent advances in ultrafast electron and X-ray diffraction have pushed imaging of structural dynamics into the femtosecond time domain, that is, the fundamental time scale of atomic motion. New physics can be reached beyond the scope of traditional diffraction or reciprocal space imaging. By exploiting the high time resolution, it has been possible to directly observe the collapse of nearly innumerable possible nuclear motions to a few key reaction modes that direct chemistry. It is this reduction in dimensionality in the transition state region that makes chemistry a transferable concept, with the same class of reactions being applicable to synthetic strategies to nearly arbitrary levels of complexity. The ability to image the underlying key reaction modes has been achieved with resolution to relative changes in atomic positions to better than 0.01 Å, that is, comparable to thermal motions. We have effectively reached the fundamental space-time limit with respect to the reaction energetics and imaging the acting forces. In the process of ensemble measured structural changes, we have missed the quantum aspects of chemistry. This perspective reviews the current state of the art in imaging chemistry in action and poses the challenge to access quantum information on the dynamics. There is the possibility with the present ultrabright electron and X-ray sources, at least in principle, to do tomographic reconstruction of quantum states in the form of a Wigner function and density matrix for the vibrational, rotational, and electronic degrees of freedom. Accessing this quantum information constitutes the ultimate demand on the spatial and temporal resolution of reciprocal space imaging of chemistry. Given the much shorter wavelength and corresponding intrinsically higher spatial resolution of current electron sources over X-rays, this Perspective will focus on electrons to provide an overview of the challenge on both the theory and the experimental fronts to extract the quantum aspects of molecular dynamics
    corecore