2,160 research outputs found

    Image processing using Gallium Arsenide (GaAs) technology

    Get PDF
    The need to increase the information return from space-borne imaging systems has increased in the past decade. The use of multi-spectral data has resulted in the need for finer spatial resolution and greater spectral coverage. Onboard signal processing will be necessary in order to utilize the available Tracking and Data Relay Satellite System (TDRSS) communication channel at high efficiency. A generally recognized approach to the increased efficiency of channel usage is through data compression techniques. The compression technique implemented is a differential pulse code modulation (DPCM) scheme with a non-uniform quantizer. The need to advance the state-of-the-art of onboard processing was recognized and a GaAs integrated circuit technology was chosen. An Adaptive Programmable Processor (APP) chip set was developed which is based on an 8-bit slice general processor. The reason for choosing the compression technique for the Multi-spectral Linear Array (MLA) instrument is described. Also a description is given of the GaAs integrated circuit chip set which will demonstrate that data compression can be performed onboard in real time at data rate in the order of 500 Mb/s

    Onboard high data rate signal processing and storage

    Get PDF
    The objective is to advance the state of the art in onboard image data processing and storage through the use of advanced gallium arsenide integrated circuit technology. Viewgraphs are given on research and development efforts, an adaptive programmable processor chip set, design characteristics of an eight bit general processor, and a density comparison of silicon and gallium arsenide integrated circuits

    The implementation of a lossless data compression module in an advanced orbiting system: Analysis and development

    Get PDF
    Data compression has been proposed for several flight missions as a means of either reducing on board mass data storage, increasing science data return through a bandwidth constrained channel, reducing TDRSS access time, or easing ground archival mass storage requirement. Several issues arise with the implementation of this technology. These include the requirement of a clean channel, onboard smoothing buffer, onboard processing hardware and on the algorithm itself, the adaptability to scene changes and maybe even versatility to the various mission types. This paper gives an overview of an ongoing effort being performed at Goddard Space Flight Center for implementing a lossless data compression scheme for space flight. We will provide analysis results on several data systems issues, the performance of the selected lossless compression scheme, the status of the hardware processor and current development plan

    Application guide for universal source encoding for space

    Get PDF
    Lossless data compression was studied for many NASA missions. The Rice algorithm was demonstrated to provide better performance than other available techniques on most scientific data. A top-level description of the Rice algorithm is first given, along with some new capabilities implemented in both software and hardware forms. Systems issues important for onboard implementation, including sensor calibration, error propagation, and data packetization, are addressed. The latter part of the guide provides twelve case study examples drawn from a broad spectrum of science instruments

    The development of lossless data compression technology for remote sensing applications

    Get PDF
    Lossless data compression has been studied for many NASA missions to achieve the benefit of increased science return, reduced onboard memory requirement, station contact time and communication bandwidth. This paper first addresses the requirement for onboard applications and provides rational for the selection of the Rice algorithm among other available techniques. A top-level description of the Rice algorithm will be given, along with some new capabilities already implemented in both software and hardware VLSI forms. The paper then addresses systems issues important for onboard implementation including sensor calibration, error propagation and data packetization. The latter part of the paper provides several case study examples drawn from a broad spectrum of science instruments including the thematic mapper, x-ray telescope, gamma-ray spectrometer, and acousto-optical spectrometer

    Line Emission from an Accretion Disk around a Rotating Black Hole: Toward a Measurement of Frame Dragging

    Get PDF
    Line emission from an accretion disk and a corotating hot spot about a rotating black hole are considered for possible signatures of the frame-dragging effect. We explicitly compare integrated line profiles from a geometrically thin disk about a Schwarzschild and an extreme Kerr black hole, and show that the line profile differences are small if the inner radius of the disk is near or above the Schwarzschild stable-orbit limit of radius 6GM/c^2. However, if the inner disk radius extends below this limit, as is possible in the extreme Kerr spacetime, then differences can become significant, especially if the disk emissivity is stronger near the inner regions. We demonstrate that the first three moments of a line profile define a three-dimensional space in which the presence of material at small radii becomes quantitatively evident in broad classes of disk models. In the context of the simple, thin disk paradigm, this moment-mapping scheme suggests formally that the iron line detected by the Advanced Satellite for Cosmology and Astrophysics mission from MCG-6-30-15 (Tanaka et al. 1995) is 3 times more likely to originate from a disk about a rotating black hole than from a Schwarzschild system. A statistically significant detection of black hole rotation in this way may be achieved after only modest improvements in the quality of data. We also consider light curves and frequency shifts in line emission as a function of time for corotating hot spots in extreme Kerr and Schwarzschild geometries. Both the frequency-shift profile and the light curve from a hot spot are valuable measures of orbital parameters and might possibly be used to detect frame dragging even at radii approaching 6GM/c^2 if the inclination angle of the orbital plane is large.Comment: 15 pages (LaTex), 7 postscript figures; color plot (Figure 1) available at http://cfata2.harvard.edu/bromley/nu_nofun.html (This version contains a new subsection as well as minor corrections.

    Coupling Non-Gravitational Fields with Simplicial Spacetimes

    Full text link
    The inclusion of source terms in discrete gravity is a long-standing problem. Providing a consistent coupling of source to the lattice in Regge Calculus (RC) yields a robust unstructured spacetime mesh applicable to both numerical relativity and quantum gravity. RC provides a particularly insightful approach to this problem with its purely geometric representation of spacetime. The simplicial building blocks of RC enable us to represent all matter and fields in a coordinate-free manner. We provide an interpretation of RC as a discrete exterior calculus framework into which non-gravitational fields naturally couple with the simplicial lattice. Using this approach we obtain a consistent mapping of the continuum action for non-gravitational fields to the Regge lattice. In this paper we apply this framework to scalar, vector and tensor fields. In particular we reconstruct the lattice action for (1) the scalar field, (2) Maxwell field tensor and (3) Dirac particles. The straightforward application of our discretization techniques to these three fields demonstrates a universal implementation of coupling source to the lattice in Regge calculus.Comment: 10 pages, no figures, Latex, fixed typos and minor corrections

    Spin Dynamics of the LAGEOS Satellite in Support of a Measurement of the Earth's Gravitomagnetism

    Get PDF
    LAGEOS is an accurately-tracked, dense spherical satellite covered with 426 retroreflectors. The tracking accuracy is such as to yield a medium term (years to decades) inertial reference frame determined via relatively inexpensive observations. This frame is used as an adjunct to the more difficult and data intensive VLBI absolute frame measurements. There is a substantial secular precession of the satellite's line of nodes consistent with the classical, Newtonian precession due to the non-sphericity of the earth. Ciufolini has suggested the launch of an identical satellite (LAGEOS-3) into an orbit supplementary to that of LAGEOS-1: LAGEOS-3 would then experience an equal and opposite classical precession to that of LAGEOS-1. Besides providing a more accurate real-time measurement of the earth's length of day and polar wobble, this paired-satellite experiment would provide the first direct measurement of the general relativistic frame-dragging effect. Of the five dominant error sources in this experiment, the largest one involves surface forces on the satellite, and their consequent impact on the orbital nodal precession. The surface forces are a function of the spin dynamics of the satellite. Consequently, we undertake here a theoretical effort to model the spin ndynamics of LAGEOS. In this paper we present our preliminary results.Comment: 16 pages, RevTeX, LA-UR-94-1289. (Part I of II, postscript figures in Part II

    The Simplicial Ricci Tensor

    Full text link
    The Ricci tensor (Ric) is fundamental to Einstein's geometric theory of gravitation. The 3-dimensional Ric of a spacelike surface vanishes at the moment of time symmetry for vacuum spacetimes. The 4-dimensional Ric is the Einstein tensor for such spacetimes. More recently the Ric was used by Hamilton to define a non-linear, diffusive Ricci flow (RF) that was fundamental to Perelman's proof of the Poincare conjecture. Analytic applications of RF can be found in many fields including general relativity and mathematics. Numerically it has been applied broadly to communication networks, medical physics, computer design and more. In this paper, we use Regge calculus (RC) to provide the first geometric discretization of the Ric. This result is fundamental for higher-dimensional generalizations of discrete RF. We construct this tensor on both the simplicial lattice and its dual and prove their equivalence. We show that the Ric is an edge-based weighted average of deficit divided by an edge-based weighted average of dual area -- an expression similar to the vertex-based weighted average of the scalar curvature reported recently. We use this Ric in a third and independent geometric derivation of the RC Einstein tensor in arbitrary dimension.Comment: 19 pages, 2 figure

    The constraints as evolution equations for numerical relativity

    Full text link
    The Einstein equations have proven surprisingly difficult to solve numerically. A standard diagnostic of the problems which plague the field is the failure of computational schemes to satisfy the constraints, which are known to be mathematically conserved by the evolution equations. We describe a new approach to rewriting the constraints as first-order evolution equations, thereby guaranteeing that they are satisfied to a chosen accuracy by any discretization scheme. This introduces a set of four subsidiary constraints which are far simpler than the standard constraint equations, and which should be more easily conserved in computational applications. We explore the manner in which the momentum constraints are already incorporated in several existing formulations of the Einstein equations, and demonstrate the ease with which our new constraint-conserving approach can be incorporated into these schemes.Comment: 10 pages, updated to match published versio
    corecore