The Ricci tensor (Ric) is fundamental to Einstein's geometric theory of
gravitation. The 3-dimensional Ric of a spacelike surface vanishes at the
moment of time symmetry for vacuum spacetimes. The 4-dimensional Ric is the
Einstein tensor for such spacetimes. More recently the Ric was used by Hamilton
to define a non-linear, diffusive Ricci flow (RF) that was fundamental to
Perelman's proof of the Poincare conjecture. Analytic applications of RF can be
found in many fields including general relativity and mathematics. Numerically
it has been applied broadly to communication networks, medical physics,
computer design and more. In this paper, we use Regge calculus (RC) to provide
the first geometric discretization of the Ric. This result is fundamental for
higher-dimensional generalizations of discrete RF. We construct this tensor on
both the simplicial lattice and its dual and prove their equivalence. We show
that the Ric is an edge-based weighted average of deficit divided by an
edge-based weighted average of dual area -- an expression similar to the
vertex-based weighted average of the scalar curvature reported recently. We use
this Ric in a third and independent geometric derivation of the RC Einstein
tensor in arbitrary dimension.Comment: 19 pages, 2 figure