3,956 research outputs found

    The Effects of Different Footprint Sizes and Cloud Algorithms on the Top-Of-Atmosphere Radiative Flux Calculation from the Clouds and Earths Radiant Energy System (CERES) Instrument on Suomi National Polar-Orbiting Partnership (NPP)

    Get PDF
    Only one Clouds and Earths Radiant Energy System (CERES) instrument is onboard the Suomi National Polar-orbiting Partnership (NPP) and it has been placed in cross-track mode since launch; it is thus not possible to construct a set of angular distribution models (ADMs) specific for CERES on NPP. Edition 4 Aqua ADMs are used for flux inversions for NPP CERES measurements. However, the footprint size of NPP CERES is greater than that of Aqua CERES, as the altitude of the NPP orbit is higher than that of the Aqua orbit. Furthermore, cloud retrievals from the Visible Infrared Imaging Radiometer Suite (VIIRS) and the Moderate Resolution Imaging Spectroradiometer (MODIS), which are the imagers sharing the spacecraft with NPP CERES and Aqua CERES, are also different. To quantify the flux uncertainties due to the footprint size difference between Aqua CERES and NPP CERES, and due to both the footprint size difference and cloud property difference, a simulation is designed using the MODIS pixel-level data, which are convolved with the Aqua CERES and NPP CERES point spread functions (PSFs) into their respective footprints. The simulation is designed to isolate the effects of footprint size and cloud property differences on flux uncertainty from calibration and orbital differences between NPP CERES and Aqua CERES. The footprint size difference between Aqua CERES and NPP CERES introduces instantaneous flux uncertainties in monthly gridded NPP CERES measurements of less than 4.0 W/sq. m for SW (shortwave) and less than 1.0 W/sq. m for both daytime and nighttime LW (longwave). The global monthly mean instantaneous SW flux from simulated NPP CERES has a low bias of 0.4 W/sq. m when compared to simulated Aqua CERES, and the root-mean-square (RMS) error is 2.2 W/sq. m between them; the biases of daytime and night- time LW flux are close to zero with RMS errors of 0.8 and 0.2 W/sq. m. These uncertainties are within the uncertainties of CERES ADMs. When both footprint size and cloud property (cloud fraction and optical depth) differences are considered, the uncertainties of monthly gridded NPP CERES SW flux can be up to 20 W/sq. m in the Arctic regions where cloud optical depth retrievals from VIIRS differ significantly from MODIS. The global monthly mean instantaneous SW flux from simulated NPP CERES has a high bias of 1.1 W/sq. m and the RMS error increases to 5.2 W/sq. m. LW flux shows less sensitivity to cloud property differences than SW flux, with uncertainties of about 2 W/sq. m in the monthly gridded LW flux, and the RMS errors of global monthly mean daytime and nighttime fluxes increase only slightly. These results highlight the importance of consistent cloud retrieval algorithms to maintain the accuracy and stability of the CERES climate data record

    A Deep ROSAT HRI Observation of NGC 1313

    Full text link
    We describe a series of observations of NGC 1313 using the ROSAT HRI with a combined exposure time of 183.5 ksec. The observations span an interval between 1992 and 1998; the purpose of observations since 1994 was to monitor the X-ray flux of SN1978K, one of several luminous sources in the galaxy. No diffuse emission is detected in the galaxy to a level of ~1-2x10^37 ergs/s/arcmin^-2. A total of eight sources are detected in the summed image within the D_25 diameter of the galaxy. The luminosities of five of the eight range from \~6x10^37 to ~6x10^38 erg/s; these sources are most likely accreting X-ray binaries, similar to sources obseved in M31 and M33. The remaining three sources all emit above 10^39 erg/s. We present light curves of the five brightest sources. Variability is detected at the 99.9% level from four of these. We identify one of the sources as an NGC 1313 counterpart of a Galactic X-ray source. The light curve, though crudely sampled, most closely resembles that of a Galactic black hole candidate such as GX339-4, but with considerably higher peak X-ray luminosity. An additional seven sources lie outside of the D_25 diameter and are either foreground stars or background AGN.Comment: 18 pages, 9 figures; accepted AJ, scheduled for November 200

    Atom chips on direct bonded copper substrates

    Full text link
    We present the use of direct bonded copper (DBC) for the straightforward fabrication of high power atom chips. Atom chips using DBC have several benefits: excellent copper/substrate adhesion, high purity, thick (> 100 microns) copper layers, high substrate thermal conductivity, high aspect ratio wires, the potential for rapid (< 8 hr) fabrication, and three dimensional atom chip structures. Two mask options for DBC atom chip fabrication are presented, as well as two methods for etching wire patterns into the copper layer. The wire aspect ratio that optimizes the magnetic field gradient as a function of power dissipation is determined to be 0.84:1 (height:width). The optimal wire thickness as a function of magnetic trapping height is also determined. A test chip, able to support 100 A of current for 2 s without failing, is used to determine the thermal impedance of the DBC. An assembly using two DBC atom chips to provide magnetic confinement is also shown.Comment: 8 pages, 5 figure

    Consistency of Global Modis Aerosol Optical Depths over Ocean on Terra and Aqua Ceres SSF Datasets

    Get PDF
    Aerosol retrievals over ocean from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua platforms are available from the Clouds and the Earth's Radiant Energy System (CERES) Single Scanner Footprint (SSF) datasets generated at NASA Langley Research Center (LaRC). Two aerosol products are reported side-by-side. The primary M product is generated by sub-setting and remapping the multi-spectral (0.47-2.1 micrometer) MODIS produced oceanic aerosol (MOD04/MYD04 for Terra/Aqua) onto CERES footprints. M*D04 processing uses cloud screening and aerosol algorithms developed by the MODIS science team. The secondary AVHRR-like A product is generated in only two MODIS bands 1 and 6 (on Aqua, bands 1 and 7). The A processing uses the CERES cloud screening algorithm, and NOAA/NESDIS glint identification, and single-channel aerosol retrieval algorithms. The M and A products have been documented elsewhere and preliminarily compared using 2 weeks of global Terra CERES SSF Edition 1A data in which the M product was based on MOD04 collection 3. In this study, the comparisons between the M and A aerosol optical depths (AOD) in MODIS band 1 (0.64 micrometers), tau(sub 1M) and tau(sub 1A) are re-examined using 9 days of global CERES SSF Terra Edition 2A and Aqua Edition 1B data from 13 - 21 October 2002, and extended to include cross-platform comparisons. The M and A products on the new CERES SSF release are generated using the same aerosol algorithms as before, but with different preprocessing and sampling procedures, lending themselves to a simple sensitivity check to non-aerosol factors. Both tau(sub 1M) and tau(sub 1A) generally compare well across platforms. However, the M product shows some differences, which increase with ambient cloud amount and towards the solar side of the orbit. Three types of comparisons conducted in this study - cross-platform, cross-product, and cross-release confirm the previously made observation that the major area for improvement in the current aerosol processing lies in a more formalized and standardized sampling (and most importantly, cloud screening) whereas optimization of the aerosol algorithm is deemed to be an important yet less critical element

    Assessment of the Visible Channel Calibrations of the TRMM VIRS and MODIS on Aqua and Terra

    Get PDF
    Several recent research satellites carry self-calibrating multispectral imagers that can be used for calibrating operational imagers lacking complete self-calibrating capabilities. In particular, the visible (VIS, 0.65 m) channels on operational meteorological satellites are generally calibrated before launch, but require vicarious calibration techniques to monitor the gains and offsets once they are in orbit. To ensure that the self-calibrating instruments are performing as expected, this paper examines the consistencies between the VIS channel (channel 1) reflectances of the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the Terra and Aqua satellites and the Version 5a and 6 reflectances of the Visible Infrared Scanner (VIRS) on the Tropical Rainfall Measuring Mission using a variety of techniques. These include comparisons of Terra and Aqua VIS radiances with coincident broadband shortwave radiances from the well-calibrated Clouds and the Earth s Radiant Energy System (CERES), time series of deep convective cloud (DCC) albedos, and ray-matching intercalibrations between each of the three satellites. Time series of matched Terra and VIRS data, Aqua and VIRS data, and DCC reflected fluxes reveal that an older version (Version 5a, ending in early 2004) of the VIRS calibration produced a highly stable record, while the latest version (Version 6) appears to overestimate the sensor gain change by approx.1%/y as the result of a manually induced gain adjustment. Comparisons with the CERES shortwave radiances unearthed a sudden change in the Terra MODIS calibration that caused a 1.17% decrease in the gain on 19 November 2003 that can be easily reversed. After correction for these manual adjustments, the trends in the VIRS and Terra channels are no greater than 0.1%/y. Although the results were more ambiguous, no statistically significant trends were found in the Aqua MODIS channel-1 gain. The Aqua radiances are 1% greater, on average, than their Terra counterparts, and after normalization are 4.6% greater than VIRS radiances, in agreement with theoretical calculations. The discrepancy between the two MODIS instruments should be taken into account to ensure consistency between parameters derived from them. With the adjustments, any of the three instruments can serve as references for calibrating other satellites. Monitoring of the calibrations continues in near-real-time and the results are available via the world wide web

    A Chandra observation of the long-duration X-ray transient KS 1731-260 in quiescence: too cold a neutron star?

    Get PDF
    After more than a decade of actively accreting at about a tenth of the Eddington critical mass accretion rate, the neutron-star X-ray transient KS 1731-260 returned to quiescence in early 2001. We present a Chandra/ACIS-S observation taken several months after this transition. We detected the source at an unabsorbed flux of ~2 x 10^{-13} erg/cm^2/s (0.5-10 keV). For a distance of 7 kpc, this results in a 0.5-10 keV luminosity of ~1 x 10^{33} erg/s and a bolometric luminosity approximately twice that. This quiescent luminosity is very similar to that of the other quiescent neutron star systems. However, if this luminosity is due to the cooling of the neutron star, this low luminosity may indicate that the source spends at least several hundreds of years in quiescence in between outbursts for the neutron star to cool. If true, then it might be the first such X-ray transient to be identified and a class of hundreds of similar systems may be present in the Galaxy. Alternatively, enhanced neutrino cooling could occur in the core of the neutron star which would cool the star more rapidly. However, in that case the neutron star in KS 1731-260 would be more massive than those in the prototypical neutron star transients (e.g., Aql X-1 or 4U 1608-52).Comment: Accepted for publicaton in ApJ letters, 13 September 200

    Thermal radiation from magnetic neutron star surfaces

    Full text link
    We investigate the thermal emission from magnetic neutron star surfaces in which the cohesive effects of the magnetic field have produced the condensation of the atmosphere and the external layers. This may happen for sufficiently cool atmospheres with moderately intense magnetic fields. The thermal emission from an isothermal bare surface of a neutron star shows no remarkable spectral features, but it is significantly depressed at energies below some threshold energy. However, since the thermal conductivity is very different in the normal and parallel directions to the magnetic field lines, the presence of the magnetic field is expected to produce a highly anisotropic temperature distribution, depending on the magnetic field geometry. In this case, the observed flux of such an object looks very similar to a BB spectrum, but depressed in a nearly constant factor at all energies. This results in a systematic underestimation of the area of the emitter (and therefore its size) by a factor 5-10 (2-3).Comment: 10 pages, 9 figure

    Chandra Observation of the Globular Cluster NGC 6440 and the Nature of Cluster X-ray Luminosity Functions

    Full text link
    As part of our campaign to determine the nature of the various source populations of the low-luminosity globular cluster X-ray sources, we have obtained a Chandra X-ray Observatory ACIS-S3 image of the globular cluster NGC 6440. We detect 24 sources to a limiting luminosity of ~2 times 10^31 erg/s (0.5-2.5keV) inside the cluster's half-mass radius, all of which lie within ~2 core radii of the cluster center. We also find excess emission in and around the core which could be due to unresolved point sources. Based upon X-ray luminosities and colors, we conclude that there are 4-5 likely quiescent low-mass X-ray binaries and that most of the other sources are cataclysmic variables. We compare these results to Chandra results from other globular clusters and find the X-ray luminosity functions differ among the clusters.Comment: 9 pages, 4 figures, accepted by ApJ, minor changes, added table of clusters' physical parameter

    Relation of Cloud Occurrence Frequency, Overlap, and Effective Thickness Derived from CALIPSO and CloudSat Merged Cloud Vertical Profiles

    Get PDF
    A cloud frequency of occurrence matrix is generated using merged cloud vertical profile derived from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Cloud Profiling Radar (CPR). The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical pro les can be related by a set of equations when the correlation distance of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches the random overlap with increasing distance separating cloud layers and that the probability of deviating from the random overlap decreases exponentially with distance. One month of CALIPSO and CloudSat data support these assumptions. However, the correlation distance sometimes becomes large, which might be an indication of precipitation. The cloud correlation distance is equivalent to the de-correlation distance introduced by Hogan and Illingworth [2000] when cloud fractions of both layers in a two-cloud layer system are the same
    corecore