3,462 research outputs found

    Upper atmosphere dynamics

    Get PDF
    The spatial distribution of stratospheric ozone is useful in diagnosis of some features of the large scale atmospheric circulation, and the ozone may also interact with the atmospheric general circulation. Local maxima in the column ozone distribution are often associated with disturbances in the lower stratosphere and upper troposphere, which may herald cyclone development in the troposphere. One research objective is to explore these issues by means of time series analysis of a zonal index of total column ozone, to suggest the existence or nonexistence of relationships between column ozone and dynamical processes which are known to occur on various time scales. Another objective is to investigate the correlation between the ozone mixing ratio on the 350 K isentropic surface and the column integrated ozone, and to investigate the use of an easily derived parameter as a proxy for ozone mixing ratio, which is conserved in the stratosphere for time scales shorter than the photochemical time scale. The source of data for these studies is the Total Ozone Mapping Spectrometer (TOMS) data set

    GEOSIM: A numerical model for geophysical fluid flow simulation

    Get PDF
    A numerical model which simulates geophysical fluid flow in a wide range of problems is described in detail, and comparisons of some of the model's results are made with previous experimental and numerical studies. The model is based upon the Boussinesq Navier-Stokes equations in spherical coordinates, which can be reduced to a cylindrical system when latitudinal walls are used near the pole and the ratio of latitudinal length to the radius of the sphere is small. The equations are approximated by finite differences in the meridional plane and spectral decomposition in the azimuthal direction. The user can specify a variety of boundary and initial conditions, and there are five different spectral truncation options. The results of five validation cases are presented: (1) the transition between axisymmetric flow and baroclinic wave flow in the side heated annulus; (2) the steady baroclinic wave of the side heated annulus; (3) the wave amplitude vacillation of the side heated annulus; (4) transition to baroclinic wave flow in a bottom heated annulus; and (5) the Spacelab Geophysical Fluid Flow Cell (spherical) experiment

    On the Spatial Distribution of Hard X-Rays from Solar Flare Loops

    Full text link
    The aim of this paper is to investigate the spatial structure of the impulsive phase hard X-ray emission from solar flares. This work is motivated by the YOHKOH and the forthcoming HESSI observations. Summarizing past results, it is shown that the transport effects can account for the observations by inhomogeneous loops where there is a strong field convergence and/or density enhancement at the top of the flaring loop. Scattering by plasma turbulence at the acceleration site or pancake type pitch angle distribution of the accelerated electrons can also give rise to enhanced emission at the loop tops. These could be a natural consequence of acceleration by plasma waves. This paper considers a general case of stochastic scattering and acceleration that leads to an isotropic pitch angle distribution and an enhanced emission from the loop tops or the acceleration site. Following the formalism developed in earlier papers the strength and the spectrum of the radiation expected from the acceleration site and the foot points are evaluated and their dependence on the parameters describing the acceleration process and the flare plasma are determined. The theoretical ratio of these two intensities and relative values of their spectral indices are compared with the YOHKOH observations, demonstrating that the above mentioned parameters can be constrained with such observations. It is shown that future high spatial and spectral resolution observations, for example those expected from HESSI, can begin to distinguish between different models and constrain their parameters.Comment: 37 pages with 20 figures. Accepted for publication in ApJ http://www.astronomy.stanford.ed

    Basic studies of baroclinic flows

    Get PDF
    A fully nonlinear 3-dimensional numerical model (GEOSIM), previously developed and validated for several cases of geophysical fluid flow, has been used to investigate the dynamical behavior of laboratory experiments of fluid flows similar to those of the Earth's atmosphere. The phenomena investigated are amplitude vacillation, and the response of the fluid system to uneven heating and cooling. The previous year's work included hysteresis in the transition between axisymmetric and wave flow. Investigation is also continuing of the flows in the Geophysical Fluid Flow Cell (GFFC), a low-gravity Spacelab experiment. Much of the effort in the past year has been spent in validation of the model under a wide range of external parameters including nonlinear flow regimes. With the implementation of a 3-dimensional upwind differencing scheme, higher spectral resolution, and a shorter time step, the model has been found capable of predicting the majority of flow regimes observed in one complete series of baroclinic annulus experiments of Pfeffer and co-workers. Detailed analysis of amplitude vacillation has revealed that the phase splitting described in the laboratory experiments occurs in some but not all cases. Through the use of animation of the models output, a vivid 3-dimensional view of the phase splitting was shown to the audience of the Southeastern Geophysical Fluid Dynamics Conference in March of this year. A study on interannual variability was made using GEOSIM with periodic variations in the thermal forcing. Thus far, the model has not predicted a chaotic behavior as observed in the experiments, although there is a sensitivity in the wavenumber selection to the initial conditions. Work on this subject, and on annulus experiments with non-axisymmetric thermal heating, will continue. The comparison of GEOSIM's predictions will result from the Spacelab 3 GFFC experiments continued over the past year, on a 'back-burner' basis. At this point, the study (in the form of a draft of a journal article) is nearly completed. The results from GEOSIM compared very well with the experiments, and the use of the model allows the demonstration of flow mechanics that were not possible with the experimental data. For example, animation of the model output shows that the forking of the spiral bands is a transient phenomenon, due to the differential east-west propagation of convection bands from different latitudes

    The ATLAS Series of Shuttle Missions

    Get PDF
    The ATLAS space shuttle missions were conducted in March 1992, April 1993, and November 1994. The ATLAS payload and companion instruments made measurements of solar irradiance and middle atmospheric temperatures and trace gas concentrations. The solar irradiance measurements included total and spectrally resolved solar irradiance. The atmospheric measurements included microwave, infrared, and ultraviolet limb sounding, nadir ultraviolet backscatter, and solar occultation techniques. This paper introduces a special section in this issue of Geophysical Research Letters

    Leveraging Implementation Science to Understand Factors Influencing Sustained Use of Mental Health Apps: a Narrative Review

    Get PDF
    Mental health (MH) smartphone applications (apps), which can aid in self-management of conditions such as depression and anxiety, have demonstrated dramatic growth over the past decade. However, their effectiveness and potential for sustained use remain uncertain. This narrative review leverages implementation science theory to explore factors influencing MH app uptake. The review is guided by the integrated Promoting Action on Research Implementation in Health Services (i-PARIHS) framework and discusses the role of the innovation, its recipients, context, and facilitation in influencing successful implementation of MH apps. The review highlights critical literature published between 2015 and 2020 with a focus on depression and anxiety apps. Sources were identified via PubMed, Google Scholar, and Twitter using a range of keywords pertaining to MH apps. Findings suggest that for apps to be successful, they must be advantageous over alternative tools, relatively easy to navigate, and aligned with users\u27 needs, skills, and resources. Significantly more attention must be paid to the complex contexts in which MH app implementation is occurring in order to refine facilitation strategies. The evidence base is still uncertain regarding the effectiveness and usability of MH apps, and much can be learned from the apps we use daily; namely, simpler is better and plans to integrate full behavioral treatments into smartphone form may be misguided. Non-traditional funding mechanisms that are nimble, responsive, and encouraging of industry partnerships will be necessary to move the course of MH app development in the right direction

    LCF Life of NiCr-Y Coated Disk Alloys After Shot Peening, Oxidation and Hot Corrosion

    Get PDF
    In a prior companion study (Ref. 1), three different Ni-Cr coating compositions (29, 35.5, 45 wt% Cr) were applied at two thicknesses by Plasma Enhanced Magnetron Sputtering (PEMS) to two similar Ni-based disk alloys. One coating also received a thin ZrO2 overcoat. The low cycle fatigue (LCF) life of each coating was determined at 760 C and was less than that of the uncoated specimens. In this followon effort, shot peening was examined as a means to improve the as-deposited coating morphology as well as impart a residual compressive stress in the near-surface region. After evaluating the effect of the shot peening on the LCF life, the effectiveness of the shot-peened coating in protecting the disk alloy from oxidation and hot corrosion attack was evaluated. This evaluation was accomplished by exposing coated and shot-peened specimens to 500 h of oxidation followed by 50 h of hot corrosion, both at 760 C in air. These exposed specimens were then tested in fatigue and compared to similarly treated and exposed uncoated specimens. For all cases, shot peening improved the LCF life of the coated specimens. More specifically, the highest Cr coating showed the best LCF life of the coated specimens after shot peening, as well as after the environmental exposures. Characterization of the coatings after shot peening, oxidation, hot corrosion and LCF testing is presented and discussed
    • …
    corecore