107 research outputs found

    CREB-Induced Inflammation Is Important for Malignant Mesothelioma Growth

    Get PDF
    Malignant mesothelioma (MM) is an aggressive tumor with no treatment regimen. Previously we have demonstrated that cyclic AMP response element binding protein (CREB) is constitutively activated in MM tumor cells and tissues and plays an important role in MM pathogenesis. To understand the role of CREB in MM tumor growth, we generated CREB-inhibited MM cell lines and performed in vitro and in vivo experiments. In vitro experiments demonstrated that CREB inhibition results in significant attenuation of proliferation and drug resistance of MM cells. CREB-silenced MM cells were then injected into severe combined immunodeficiency mice, and tumor growth in s.c. and i.p. models of MM was followed. We observed significant inhibition in MM tumor growth in both s.c. and i.p. models and the presence of a chemotherapeutic drug, doxorubicin, further inhibited MM tumor growth in the i.p. model. Peritoneal lavage fluids from CREB-inhibited tumor-bearing mice showed a significantly reduced total cell number, differential cell counts, and pro-inflammatory cytokines and chemokines (IL-6, IL-8, regulated on activation normal T cell expressed and secreted, monocyte chemotactic protein-1, and vascular endothelial growth factor). In vitro studies showed that asbestos-induced inflammasome/inflammation activation in mesothelial cells was CREB dependent, further supporting the role of CREB in inflammation-induced MM pathogenesis. In conclusion, our data demonstrate the involvement of CREB in the regulation of MM pathogenesis by regulation of inflammation

    Optical mapping as a routine tool for bacterial genome sequence finishing

    Get PDF
    Background: In sequencing the genomes of two Xenorhabdus species, we encountered a large number of sequence repeats and assembly anomalies that stalled finishing efforts. This included a stretch of about 12 Kb that is over 99.9% identical between the plasmid and chromosome of X. nematophila. Results: Whole genome restriction maps of the sequenced strains were produced through optical mapping technology. These maps allowed rapid resolution of sequence assembly problems, permitted closing of the genome, and allowed correction of a large inversion in a genome assembly that we had considered finished. Conclusion: Our experience suggests that routine use of optical mapping in bacterial genome sequence finishing is warranted. When combined with data produced through 454 sequencing, an optical map can rapidly and inexpensively generate an ordered and oriented set of contigs to produce a nearly complete genome sequence assembly

    Does the presence of accompanying symptom clusters differentiate the comparative effectiveness of second-line medication strategies for treating depression?

    Get PDF
    We explored whether clinical outcomes differ by treatment strategy following initial antidepressant treatment failure among patients with and without clinically relevant symptom clusters

    Differential engagement of anterior cingulate corte subdivisions for cognitive and emotional function.

    Get PDF
    Abstract Functional differentiation of dorsal (dACC) and rostral (rACC) anterior cingulate cortex for cognitive and emotional function has received considerable indirect support. Using fMRI, parallel tasks, and within-subject analysis, the present study directly tested the proposed specialization of ACC subdivisions. A Task  Region interaction confirmed more dACC activation during color-word distractors and more rACC activation during emotion-word distractors. Activity in ACC subdivisions differentially predicted behavioral performance. Connectivity with prefrontal and limbic regions also supported distinct dACC and rACC roles. Findings provide direct evidence for differential engagement of ACC subdivisions in cognitive and emotional processing and for differential functional connectivity in the implementation of cognitive control and emotion regulation. Results point to an anatomical and functional continuum rather than segregated operations

    The Entomopathogenic Bacterial Endosymbionts Xenorhabdus and Photorhabdus: Convergent Lifestyles from Divergent Genomes

    Get PDF
    Members of the genus Xenorhabdus are entomopathogenic bacteria that associate with nematodes. The nematode-bacteria pair infects and kills insects, with both partners contributing to insect pathogenesis and the bacteria providing nutrition to the nematode from available insect-derived nutrients. The nematode provides the bacteria with protection from predators, access to nutrients, and a mechanism of dispersal. Members of the bacterial genus Photorhabdus also associate with nematodes to kill insects, and both genera of bacteria provide similar services to their different nematode hosts through unique physiological and metabolic mechanisms. We posited that these differences would be reflected in their respective genomes. To test this, we sequenced to completion the genomes of Xenorhabdus nematophila ATCC 19061 and Xenorhabdus bovienii SS-2004. As expected, both Xenorhabdus genomes encode many anti-insecticidal compounds, commensurate with their entomopathogenic lifestyle. Despite the similarities in lifestyle between Xenorhabdus and Photorhabdus bacteria, a comparative analysis of the Xenorhabdus, Photorhabdus luminescens, and P. asymbiotica genomes suggests genomic divergence. These findings indicate that evolutionary changes shaped by symbiotic interactions can follow different routes to achieve similar end points

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Proceedings of the Thirteenth International Society of Sports Nutrition (ISSN) Conference and Expo

    Get PDF
    Meeting Abstracts: Proceedings of the Thirteenth International Society of Sports Nutrition (ISSN) Conference and Expo Clearwater Beach, FL, USA. 9-11 June 201
    • …
    corecore