11,485 research outputs found

    Processing of Bi–Sr–Ca–Cu–O glasses using platinum and alumina crucibles

    Get PDF
    Reactions with alumina and platinum crucibles were studied during the preparation of Bi2Sr2Ca1Cu2Oy “2212” glasses. In particular, reactions with Al2O3 are of interest since alumina is a potential substrate material in applications of this superconductor. Glasses processed using alumina crucibles were completely homogeneous and free of secondary phases although the material contained 2.26 at. % Al in solution. After heat treatments, Al was found in the form of SrCaAlOy particles located primarily along grain boundaries of the 2212 superconducting phase. Platinum contamination was minimal (14−xCaxCu24O41, and 2201 as second phases. Differential thermal analysis (DTA) suggested that the crystallization processes were essentially the same for all samples although the small amount of Al seemed to slow the kinetics leading to the formation of 2212. Neither Al nor Pt was detected within the 2212 phase. The measured superconducting compositions in each annealed sample were nearly the same with identical transition temperatures of 88 K. Overall differences in stoichiometry were accommodated by changes in the number and composition of the secondary phases present

    Einstein Cluster Alignments Revisited

    Get PDF
    We have examined whether the major axes of rich galaxy clusters tend to point toward their nearest neighboring cluster. We have used the data of Ulmer, McMillan, and Kowalski, who used position angles based on X-ray morphology. We also studied a subset of this sample with updated positions and distances from the MX Northern Abell Cluster Survey (for rich clusters (R≄1R \geq 1) with well known redshifts). A Kolmogorov-Smirnov (KS) test showed no significant signal for nonrandom angles on any scale ≀100h−1\leq 100h^{-1}Mpc. However, refining the null hypothesis with the Wilcoxon rank-sum test, we found a high confidence signal for alignment. Confidence levels increase to a high of 99.997% as only near neighbors which are very close are considered. We conclude there is a strong alignment signal in the data, consistent with gravitational instability acting on Gaussian perturbations.Comment: Minor revisions. To be published in Ap

    Karhunen-Lo`eve Decomposition of Extensive Chaos

    Full text link
    We show that the number of KLD (Karhunen-Lo`eve decomposition) modes D_KLD(f) needed to capture a fraction f of the total variance of an extensively chaotic state scales extensively with subsystem volume V. This allows a correlation length xi_KLD(f) to be defined that is easily calculated from spatially localized data. We show that xi_KLD(f) has a parametric dependence similar to that of the dimension correlation length and demonstrate that this length can be used to characterize high-dimensional inhomogeneous spatiotemporal chaos.Comment: 12 pages including 4 figures, uses REVTeX macros. To appear in Phys. Rev. Let

    Controllability of structural brain networks.

    Get PDF
    Cognitive function is driven by dynamic interactions between large-scale neural circuits or networks, enabling behaviour. However, fundamental principles constraining these dynamic network processes have remained elusive. Here we use tools from control and network theories to offer a mechanistic explanation for how the brain moves between cognitive states drawn from the network organization of white matter microstructure. Our results suggest that densely connected areas, particularly in the default mode system, facilitate the movement of the brain to many easily reachable states. Weakly connected areas, particularly in cognitive control systems, facilitate the movement of the brain to difficult-to-reach states. Areas located on the boundary between network communities, particularly in attentional control systems, facilitate the integration or segregation of diverse cognitive systems. Our results suggest that structural network differences between cognitive circuits dictate their distinct roles in controlling trajectories of brain network function

    On the future of astrostatistics: statistical foundations and statistical practice

    Full text link
    This paper summarizes a presentation for a panel discussion on "The Future of Astrostatistics" held at the Statistical Challenges in Modern Astronomy V conference at Pennsylvania State University in June 2011. I argue that the emerging needs of astrostatistics may both motivate and benefit from fundamental developments in statistics. I highlight some recent work within statistics on fundamental topics relevant to astrostatistical practice, including the Bayesian/frequentist debate (and ideas for a synthesis), multilevel models, and multiple testing. As an important direction for future work in statistics, I emphasize that astronomers need a statistical framework that explicitly supports unfolding chains of discovery, with acquisition, cataloging, and modeling of data not seen as isolated tasks, but rather as parts of an ongoing, integrated sequence of analyses, with information and uncertainty propagating forward and backward through the chain. A prototypical example is surveying of astronomical populations, where source detection, demographic modeling, and the design of survey instruments and strategies all interact.Comment: 8 pp, 2 figures. To appear in "Statistical Challenges in Modern Astronomy V," (Lecture Notes in Statistics, Vol. 209), ed. Eric D. Feigelson and G. Jogesh Babu; publication planned for Sep 2012; see http://www.springer.com/statistics/book/978-1-4614-3519-

    Evaluating models for lithospheric loss and intraplate volcanism beneath the Central Appalachian Mountains

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Long, M. D., Wagner, L. S., King, S. D., Evans, R. L., Mazza, S. E., Byrnes, J. S., Johnson, E. A., Kirby, E., Bezada, M. J., Gazel, E., Miller, S. R., Aragon, J. C., & Liu, S. Evaluating models for lithospheric loss and intraplate volcanism beneath the Central Appalachian Mountains. Journal of Geophysical Research: Solid Earth, 126(10), (2021): e2021JB022571, https://doi.org/10.1029/2021JB022571.The eastern margin of North America has been shaped by a series of tectonic events including the Paleozoic Appalachian Orogeny and the breakup of Pangea during the Mesozoic. For the past ∌200 Ma, eastern North America has been a passive continental margin; however, there is evidence in the Central Appalachian Mountains for post-rifting modification of lithospheric structure. This evidence includes two co-located pulses of magmatism that post-date the rifting event (at 152 and 47 Ma) along with low seismic velocities, high seismic attenuation, and high electrical conductivity in the upper mantle. Here, we synthesize and evaluate constraints on the lithospheric evolution of the Central Appalachian Mountains. These include tomographic imaging of seismic velocities, seismic and electrical conductivity imaging along the Mid-Atlantic Geophysical Integrative Collaboration array, gravity and heat flow measurements, geochemical and petrological examination of Jurassic and Eocene magmatic rocks, and estimates of erosion rates from geomorphological data. We discuss and evaluate a set of possible mechanisms for lithospheric loss and intraplate volcanism beneath the region. Taken together, recent observations provide compelling evidence for lithospheric loss beneath the Central Appalachians; while they cannot uniquely identify the processes associated with this loss, they narrow the range of plausible models, with important implications for our understanding of intraplate volcanism and the evolution of continental lithosphere. Our preferred models invoke a combination of (perhaps episodic) lithospheric loss via Rayleigh-Taylor instabilities and subsequent small-scale mantle flow in combination with shear-driven upwelling that maintains the region of thin lithosphere and causes partial melting in the asthenosphere.The authors acknowledge support from the U.S. National Science Foundation EarthScope and GeoPRISMS programs via grants EAR-1460257 (R. L. Evans), EAR-1249412 (E. Gazel), EAR-1249438 (E. A. Johnson), EAR-1250988 (S. D. King), EAR-1251538 (E. Kirby), and EAR-1251515 (M. D. Long). The collection and dissemination of most of the geophysical data and models discussed in this study were facilitated by the Incorporated Research Institutions for Seismology (IRIS). The facilities of the IRIS Consortium are supported by the United States National Science Foundation under Cooperative Agreement EAR-1261681

    Beyond 'Global Production Networks': Australian Fashion Week's Trans-Sectoral Synergies

    Get PDF
    When studies of industrial organisation are informed by commodity chain, actor network, or global production network theories and focus on tracing commodity flows, social networks, or a combination of the two, they can easily overlook the less routine trans-sectoral associations that are crucial to the creation and realisation of value. This paper shifts attention to identifying the sites at which diverse specialisations meet to concentrate and amplify mutually reinforcing circuits of value. These valorisation processes are demonstrated in the case of Australian Fashion Week, an event in which multiple interests converge to synchronize different expressions of fashion ideas, actively construct fashion markets and enhance the value of a diverse range of fashionable commodities. Conceptualising these interconnected industries as components of a trans-sectoral fashion complex has implications for understanding regional development, world cities, production location, and the manner in which production systems “touch down” in different places

    Deep 1.1 mm-wavelength imaging of the GOODS-South field by AzTEC/ASTE -- II. Redshift distribution and nature of the submillimetre galaxy population

    Get PDF
    We report the results of the counterpart identification and a detailed analysis of the physical properties of the 48 sources discovered in our deep 1.1mm wavelength imaging survey of the GOODS-South field using the AzTEC instrument on the Atacama Submillimeter Telescope Experiment (ASTE). One or more robust or tentative counterpart candidate is found for 27 and 14 AzTEC sources, respectively, by employing deep radio continuum, Spitzer MIPS & IRAC, and LABOCA 870 micron data. Five of the sources (10%) have two robust counterparts each, supporting the idea that these galaxies are strongly clustered and/or heavily confused. Photometric redshifts and star formation rates (SFRs) are derived by analyzing UV-to-optical and IR-to-radio SEDs. The median redshift of z~2.6 is similar to other earlier estimates, but we show that 80% of the AzTEC-GOODS sources are at z>2, with a significant high redshift tail (20% at z>3.3). Rest-frame UV and optical properties of AzTEC sources are extremely diverse, spanning 10 magnitude in the i- and K-band photometry with median values of i=25.3 and K=22.6 and a broad range of red colour (i-K=0-6). These AzTEC sources are some of the most luminous galaxies in the rest-frame optical bands at z>2, with inferred stellar masses of (1-30) x 10^{10} solar masses and UV-derived star formation rates of SFR(UV) > 10-1000 solar masses per year. The IR-derived SFR, 200-2000 solar masses per year, is independent of redshift or stellar mass. The resulting specific star formation rates, SSFR = 1-100 per Gyr, are 10-100 times higher than similar mass galaxies at z=0, and they extend the previously observed rapid rise in the SSFR with redshift to z=2-5. These galaxies have a SFR high enough to have built up their entire stellar mass within their Hubble time. We find only marginal evidence for an AGN contribution to the near-IR and mid-IR SEDs. (abridged)Comment: 31 pages including 14 figures, accepted for publication in the MNRAS. A higher quality Figure 1 is also included as Figure1.jp

    Para-adventure: A hyper-dynamic problem for the inclusive coach

    Get PDF
    Recent research has recognized sports coaching as complex, chaotic, and cognitively taxing for coaches. Against this backdrop, the present paper explores challenges faced by high-level coaches working with disabled performers. Specifically, it seeks to understand how coaches create mental models of performance in adventure sports and para-canoe. Five coaches were purposively sampled and underwent a semi-structured interview. A thematic analysis revealed conceptualizing the mental model as being mechanically-related for all and as including a social construction within the para-canoe coaches. Reflection on the coaching process and on personal characteristics were perceived as important to individualized inclusive coaching. Coach training should particularly emphasize the need for critical judgment and decision making skills within a similarly oriented social structure of coaches and support staff where applicable

    Free energy and molecular dynamics calculations for the cubic-tetragonal phase transition in zirconia

    Full text link
    The high-temperature cubic-tetragonal phase transition of pure stoichiometric zirconia is studied by molecular dynamics (MD) simulations and within the framework of the Landau theory of phase transformations. The interatomic forces are calculated using an empirical, self-consistent, orthogonal tight-binding (SC-TB) model, which includes atomic polarizabilities up to the quadrupolar level. A first set of standard MD calculations shows that, on increasing temperature, one particular vibrational frequency softens. The temperature evolution of the free energy surfaces around the phase transition is then studied with a second set of calculations. These combine the thermodynamic integration technique with constrained MD simulations. The results seem to support the thesis of a second-order phase transition but with unusual, very anharmonic behaviour above the transition temperature
    • 

    corecore