9,440 research outputs found

    A load factor formula

    Get PDF
    The ultimate test of a load factor formula is experience. The chief advantages of a semi rational formula over arbitrary factors are that it fairs in between points of experience and it differentiates according to variables within a type. Structural failure of an airplane apparently safe according to the formula would call for a specific change in the formula. The best class of airplanes with which to check a load factor formula seems to be those which have experienced structural failure. Table I comprises a list of the airplanes which have experienced failure in flight traceable to the wing structure. The load factor by formula is observed to be greater than the designed strength in each case, without a single exception. Table II comprises the load factor by formula with the designed strength of a number of well-known service types. The formula indicates that by far the majority of these have ample structural strength. One case considered here in deriving a suitable formula is that of a heavy load carrier of large size and practically no reserve power

    Torsion of wing trusses at diving speeds

    Get PDF
    The purpose of this report is to indicate what effect the distortion of a typical loaded wing truss will have upon the load distribution. The case of high angle of incidence may be dismissed immediately from consideration as the loads on the front and rear trusses are balanced, and consequently there will be little angular distortion. A given angular distortion will have the maximum effect upon load distribution in the region of the angle of no-lift, because the slope of the lift curve is highest here, and it is here that the greatest angular distortion will occur, because the load on the front truss acts downward while the load on the rear truss acts upward

    Fuselage stress analysis

    Get PDF
    Report analyzes the stresses in a fuselage of the built-up type in which the shear is taken by diagonal bracing wires. Tests are conducted for landing, flying, and thrust loads

    ρ\rho-ω\omega mixing and spin dependent CSV potential

    Full text link
    We construct the charge symmetry violating (CSV) nucleon-nucleon potential induced by the ρ0\rho^0-\o mixing due to the neutron-proton mass difference driven by the NNNN loop. Analytical expression for for the two-body CSV potential is presented containing both the central and non- central NNNN interaction. We show that the ρ\rhoNNNN tensor interaction can significantly enhance the charge symmetry violating NNNN interaction even if momentum dependent off-shell ρ0\rho^0-ω\omega mixing amplitude is considered. It is also shown that the inclusion of form factors removes the divergence arising out of the contact interaction. Consequently, we see that the precise size of the computed scattering length difference depends on how the short range aspects of the CSV potential are treated.Comment: Accepted for publication in Phys. Rev.

    100 kHz, 100 ms, 400 J burst-mode laser with dual-wavelength diode-pumped amplifiers

    Get PDF
    The burst duration of an all-diode-pumped burst-mode laser is extended to 100 ms and 100 kHz (10,000 pulses) by utilizing dual-wavelength diode pumping. Total energies of 225 J at 10 kHz and 400 J at 100 kHz are achieved during the 100 ms burst period at 1064 nm. This represents an order-of-magnitude increase in the number of pulses compared with prior work, while maintaining similar or higher pulse energies. Amplitude tailoring of each pulse is used to flatten the burst profile, reducing the standard deviation in pulse energy over the 100 ms burst from 3.7% to 2.1% with a burst-to-burst standard deviation of 0.8%

    A Focused Sequent Calculus Framework for Proof Search in Pure Type Systems

    Get PDF
    Basic proof-search tactics in logic and type theory can be seen as the root-first applications of rules in an appropriate sequent calculus, preferably without the redundancies generated by permutation of rules. This paper addresses the issues of defining such sequent calculi for Pure Type Systems (PTS, which were originally presented in natural deduction style) and then organizing their rules for effective proof-search. We introduce the idea of Pure Type Sequent Calculus with meta-variables (PTSCalpha), by enriching the syntax of a permutation-free sequent calculus for propositional logic due to Herbelin, which is strongly related to natural deduction and already well adapted to proof-search. The operational semantics is adapted from Herbelin's and is defined by a system of local rewrite rules as in cut-elimination, using explicit substitutions. We prove confluence for this system. Restricting our attention to PTSC, a type system for the ground terms of this system, we obtain the Subject Reduction property and show that each PTSC is logically equivalent to its corresponding PTS, and the former is strongly normalising iff the latter is. We show how to make the logical rules of PTSC into a syntax-directed system PS for proof-search, by incorporating the conversion rules as in syntax-directed presentations of the PTS rules for type-checking. Finally, we consider how to use the explicitly scoped meta-variables of PTSCalpha to represent partial proof-terms, and use them to analyse interactive proof construction. This sets up a framework PE in which we are able to study proof-search strategies, type inhabitant enumeration and (higher-order) unification

    100-ps-pulse-duration, 100-J burst-mode laser for kHz–MHz flow diagnostics

    Get PDF
    A high-speed, master-oscillator power-amplifier burst-mode laser with ∼100 ps pulse duration is demonstrated with output energy up to 110 J per burst at 1064 nm and second-harmonic conversion efficiency up to 67% in a KD*P crystal. The output energy is distributed across 100 to 10,000 sequential laser pulses, with 10 kHz to 1 MHz repetition rate, respectively, over 10 ms burst duration. The performance of the 100 ps burst-mode laser is evaluated and been found to compare favorably with that of a similar design that employs a conventional ∼8 ns pulse duration. The nearly transform-limited spectral bandwidth of 0.15 cm−1 at 532 nm is ideal for a wide range of linear and nonlinear spectroscopic techniques, and the 100 picosecond pulse duration is optimal for fiber-coupled spectroscopic measurements in harsh reacting-flow environments
    corecore