1,986 research outputs found

    The state of care transitions education: A survey of AGS teachers section members

    Get PDF
    posterCare transitions pose significant risks for older and more complex medical patients, including medication errors and rehospitalizations. Unfortunately, few medical schools and residency programs provide targeted care transitions training. Changes in the healthcare system, including coordination of care provisions in the Affordable Care Act and proposed CMS billing codes for care coordination underscore the need for future health professionals to perform care transitions effectively. Given the impact of care transitions on older adults, we sought to determine the extent to which geriatric educators currently address care transitions education

    Nonlinear Scattering of a Bose-Einstein Condensate on a Rectangular Barrier

    Full text link
    We consider the nonlinear scattering and transmission of an atom laser, or Bose-Einstein condensate (BEC) on a finite rectangular potential barrier. The nonlinearity inherent in this problem leads to several new physical features beyond the well-known picture from single-particle quantum mechanics. We find numerical evidence for a denumerably infinite string of bifurcations in the transmission resonances as a function of nonlinearity and chemical potential, when the potential barrier is wide compared to the wavelength of oscillations in the condensate. Near the bifurcations, we observe extended regions of near-perfect resonance, in which the barrier is effectively invisible to the BEC. Unlike in the linear case, it is mainly the barrier width, not the height, that controls the transmission behavior. We show that the potential barrier can be used to create and localize a dark soliton or dark soliton train from a phonon-like standing wave.Comment: 15 pages, 15 figures, new version includes clarification of definition of transmission coefficient in general nonlinear vs. linear cas

    Survey of financial burden of families in the U.S. with children using home mechanical ventilation.

    Get PDF
    Aim: To describe and quantify the out-of-pocket expenses, employment loss, and other financial impact related to caring for a child using home mechanical ventilation (HMV). METHOD: We conducted a cross-sectional survey of U.S. families with children who used HMV. Eligible participants were invited to complete a questionnaire addressing household and child characteristics, out-of-pocket expenses, employment loss/reduction, and financial stress. Participants were recruited with the help of three national patient registries. RESULTS: Two hundred twenty-six participants from 32 states (152 with children who used invasive ventilation and 74 with children who used noninvasive ventilation) completed the questionnaire. Participants' median reported yearly household income was 90 000(IQR70 000−150 000).Themedianamountpaidinout−of−pocketexpensesintheprevious3monthstocarefortheirchildusingHMVtotaled90 000 (IQR 70 000-150 000). The median amount paid in out-of-pocket expenses in the previous 3 months to care for their child using HMV totaled 3899 (IQR $2900-4550). Reported levels of financial stress decreased as income increased; 37-60% of participants, depending on income quintile, reported moderate financial stress with "some" of that stress due to their out-of-pocket expenses. A substantial majority reported one or more household members stopped or reduced work and took unpaid weeks off of work to care for their child. CONCLUSION: The financial impact of caring for a child using HMV is considerable for some families. Providers need to understand these financial burdens and should inform families of them to help families anticipate and plan for them

    Exposure to NO2, CO, and PM2.5 is linked to regional DNA methylation differences in asthma.

    Get PDF
    Background:DNA methylation of CpG sites on genetic loci has been linked to increased risk of asthma in children exposed to elevated ambient air pollutants (AAPs). Further identification of specific CpG sites and the pollutants that are associated with methylation of these CpG sites in immune cells could impact our understanding of asthma pathophysiology. In this study, we sought to identify some CpG sites in specific genes that could be associated with asthma regulation (Foxp3 and IL10) and to identify the different AAPs for which exposure prior to the blood draw is linked to methylation levels at these sites. We recruited subjects from Fresno, California, an area known for high levels of AAPs. Blood samples and responses to questionnaires were obtained (n = 188), and in a subset of subjects (n = 33), repeat samples were collected 2 years later. Average measures of AAPs were obtained for 1, 15, 30, 90, 180, and 365 days prior to each blood draw to estimate the short-term vs. long-term effects of the AAP exposures. Results:Asthma was significantly associated with higher differentially methylated regions (DMRs) of the Foxp3 promoter region (p = 0.030) and the IL10 intronic region (p = 0.026). Additionally, at the 90-day time period (90 days prior to the blood draw), Foxp3 methylation was positively associated with NO2, CO, and PM2.5 exposures (p = 0.001, p = 0.001, and p = 0.012, respectively). In the subset of subjects retested 2 years later (n = 33), a positive association between AAP exposure and methylation was sustained. There was also a negative correlation between the average Foxp3 methylation of the promoter region and activated Treg levels (p = 0.039) and a positive correlation between the average IL10 methylation of region 3 of intron 4 and IL10 cytokine expression (p = 0.030). Conclusions:Short-term and long-term exposures to high levels of CO, NO2, and PM2.5 were associated with alterations in differentially methylated regions of Foxp3. IL10 methylation showed a similar trend. For any given individual, these changes tend to be sustained over time. In addition, asthma was associated with higher differentially methylated regions of Foxp3 and IL10

    Reducing in-stent restenosis therapeutic manipulation of miRNA in vascular remodeling and inflammation

    Get PDF
    Background: Drug-eluting stents reduce the incidence of in-stent restenosis, but they result in delayed arterial healing and are associated with a chronic inflammatory response and hypersensitivity reactions. Identifying novel interventions to enhance wound healing and reduce the inflammatory response may improve long-term clinical outcomes. Micro–ribonucleic acids (miRNAs) are noncoding small ribonucleic acids that play a prominent role in the initiation and resolution of inflammation after vascular injury.<p></p> Objectives: This study sought to identify miRNA regulation and function after implantation of bare-metal and drug-eluting stents.<p></p> Methods: Pig, mouse, and in vitro models were used to investigate the role of miRNA in in-stent restenosis.<p></p> Results: We documented a subset of inflammatory miRNAs activated after stenting in pigs, including the miR-21 stem loop miRNAs. Genetic ablation of the miR-21 stem loop attenuated neointimal formation in mice post-stenting. This occurred via enhanced levels of anti-inflammatory M2 macrophages coupled with an impaired sensitivity of smooth muscle cells to respond to vascular activation.<p></p> Conclusions: MiR-21 plays a prominent role in promoting vascular inflammation and remodeling after stent injury. MiRNA-mediated modulation of the inflammatory response post-stenting may have therapeutic potential to accelerate wound healing and enhance the clinical efficacy of stenting

    \u3cem\u3eDACH1\u3c/em\u3e Mutation Frequency in Endometrial Cancer Is Associated with High Tumor Mutation Burden

    Get PDF
    OBJECTIVE: DACH1 is a transcriptional repressor and tumor suppressor gene frequently mutated in melanoma, bladder, and prostate cancer. Loss of DACH1 expression is associated with poor prognostic features and reduced overall survival in uterine cancer. In this study, we utilized the Oncology Research Information Exchange Network (ORIEN) Avatar database to determine the frequency of DACH1 mutations in patients with endometrial cancer in our Kentucky population. METHODS: We obtained clinical and genomic data for 65 patients with endometrial cancer from the Markey Cancer Center (MCC). We examined the clinical attributes of the cancers by DACH1 status by comparing whole-exome sequencing (WES), RNA Sequencing (RNASeq), microsatellite instability (MSI), and tumor mutational burden (TMB). RESULTS: Kentucky women with endometrial cancer had an increased frequency of DACH1 mutations (12/65 patients, 18.5%) compared to The Cancer Genome Atlas (TCGA) endometrial cancer population (25/586 patients, 3.8%) with p-value = 1.04E-05. DACH1 mutations were associated with increased tumor mutation count in both TCGA (median 65 vs. 8972, p-value = 7.35E-09) and our Kentucky population (490 vs. 2160, p-value = 6.0E-04). DACH1 mutated patients have a higher tumor mutation burden compared to DACH1 wild-type (24 vs. 6.02, p-value = 4.29E-05). DACH1 mutations showed significant gene co-occurrence patterns with POLE, MLH1, and PMS2. DACH1 mutations were not associated with an increase in microsatellite instability at MCC (MSI-H) (p-value = 0.1342). CONCLUSIONS: DACH1 mutations are prevalent in Kentucky patients with endometrial cancer. These mutations are associated with high tumor mutational burden and co-occur with genome destabilizing gene mutations. These findings suggest DACH1 may be a candidate biomarker for future trials with immunotherapy, particularly in endometrial cancers

    Particulate metal exposures induce plasma metabolome changes in a commuter panel study

    Get PDF
    Introduction Advances in liquid chromatography-mass spectrometry (LC-MS) have enabled high-resolution metabolomics (HRM) to emerge as a sensitive tool for measuring environmental exposures and corresponding biological response. Using measurements collected as part of a large, panel-based study of car commuters, the current analysis examines in-vehicle air pollution concentrations, targeted inflammatory biomarker levels, and metabolomic profiles to trace potential metabolic perturbations associated with on-road traffic exposures. Methods A 60-person panel of adults participated in a crossover study, where each participant conducted a highway commute and randomized to either a side-street commute or clinic exposure session. In addition to in-vehicle exposure characterizations, participants contributed pre- and post-exposure dried blood spots for 2-hr changes in targeted proinflammatory and vascular injury biomarkers and 10-hr changes in the plasma metabolome. Samples were analyzed on a Thermo QExactive MS system in positive and negative electrospray ionization (ESI) mode. Data were processed and analyzed in R using apLCMS, xMSanalyzer, and limma. Features associated with environmental exposures or biological endpoints were identified with a linear mixed effects model and annotated through human metabolic pathway analysis in mummichog. Results HRM detected 10-hr perturbations in 110 features associated with in-vehicle, particulate metal exposures (Al, Pb, and Fe) which reflect changes in arachidonic acid, leukotriene, and tryptophan metabolism. Two-hour changes in proinflammatory biomarkers hs-CRP, IL-6, IL-8, and IL-1β were also associated with 10-hr changes in the plasma metabolome, suggesting diverse amino acid, leukotriene, and antioxidant metabolism effects. A putatively identified metabolite, 20-OH-LTB4, decreased after in-vehicle exposure to particulate metals, suggesting a subclinical immune response. Conclusions Acute exposures to traffic-related air pollutants are associated with broad inflammatory response, including several traditional markers of inflammation

    Th2/Th1 Cytokine Imbalance Is Associated With Higher COVID-19 Risk Mortality

    Get PDF
    A major component of COVID-19 severe respiratory syndrome is the patient’s immune response to the SARS-CoV-2 virus and the consequential multi-organ inflammatory response. Several studies suggested a potential role of CD4+ T cells in COVID-19 severe respiratory syndrome. We first hypothesized that there is a type 2 helper (Th2)/type 1 helper (Th1) imbalance in older age, male, asthma, smokers, and high ACE2 expression phenotype in the airway of non-infected patients. Next, we hypothesized that a Th2/Th1 imbalance may predict higher mortality in COVID-19 infected hospitalized patients with and without patient reported current asthma. We first analyzed publicly available gene expression from the sputum of 118 moderate-to-severe asthma patients and 21 healthy controls, and from nasal epithelium of 26 healthy current smokers and 21 healthy never smokers. Secondly, we profiled 288 new serum proteomics samples measured at admission from patients hospitalized within the Mount Sinai Health System with positive SARS-CoV-2 infection. We first computed Th1 and Th2 pathway enrichment scores by gene set variation analysis and then compared the differences in Th2 and Th1 pathway scores between patients that died compared to those that survived, by linear regression. The level of Th2/Th1 imbalance, as determined by the enrichment score, was associated with age, sex, and ACE2 expression in sputum, and with active smoking status in nasal epithelium (p \u3c 0.05). Th2/Th1 imbalance at hospital admission in sera of patients was not significantly associated with death from COVID-19 (p = 0.11), unless evaluated in the asthmatic strata (p = 0.01). Using a similar approach we also observed a higher Th17/Th1 cytokine imbalance in all deceased patients compared to those that survived (p \u3c 0.001), as well as in the asthmatic strata only (p \u3c 0.01). Th2/Th1 imbalance is higher in the sera of asthma patients at admission that do not survive COVID-19, suggesting that the Th2/Th1 interplay may affect patient outcomes in SARS-CoV2 infection. In addition, we report that Th17/Th1 imbalance is increased in all patients that die of COVID-19
    • …
    corecore