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RESEARCH ARTICLE
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Abstract

Introduction

Advances in liquid chromatography-mass spectrometry (LC-MS) have enabled high-resolu-

tion metabolomics (HRM) to emerge as a sensitive tool for measuring environmental expo-

sures and corresponding biological response. Using measurements collected as part of a

large, panel-based study of car commuters, the current analysis examines in-vehicle air pol-

lution concentrations, targeted inflammatory biomarker levels, and metabolomic profiles to

trace potential metabolic perturbations associated with on-road traffic exposures.

Methods

A 60-person panel of adults participated in a crossover study, where each participant con-

ducted a highway commute and randomized to either a side-street commute or clinic expo-

sure session. In addition to in-vehicle exposure characterizations, participants contributed

pre- and post-exposure dried blood spots for 2-hr changes in targeted proinflammatory and

vascular injury biomarkers and 10-hr changes in the plasma metabolome. Samples were

analyzed on a Thermo QExactive MS system in positive and negative electrospray ioniza-

tion (ESI) mode. Data were processed and analyzed in R using apLCMS, xMSanalyzer, and

limma. Features associated with environmental exposures or biological endpoints were

identified with a linear mixed effects model and annotated through human metabolic path-

way analysis in mummichog.

Results

HRM detected 10-hr perturbations in 110 features associated with in-vehicle, particulate

metal exposures (Al, Pb, and Fe) which reflect changes in arachidonic acid, leukotriene, and
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tryptophan metabolism. Two-hour changes in proinflammatory biomarkers hs-CRP, IL-6, IL-

8, and IL-1β were also associated with 10-hr changes in the plasma metabolome, suggest-

ing diverse amino acid, leukotriene, and antioxidant metabolism effects. A putatively identi-

fied metabolite, 20-OH-LTB4, decreased after in-vehicle exposure to particulate metals,

suggesting a subclinical immune response.

Conclusions

Acute exposures to traffic-related air pollutants are associated with broad inflammatory

response, including several traditional markers of inflammation.

Introduction

Globally, source apportionment studies attribute 25% of urban ambient particulate matter less

than 2.5 microns (PM2.5) to traffic sources [1]. Nearly ubiquitous, traffic-related pollution

(TRP) has been linked to numerous adverse health effects [2]. Despite this, the specific constit-

uents of TRP responsible for these effects and how they contribute to corresponding biological

responses are still not well understood [3]. Uncertainty regarding the etiology of TRP-related

toxicity is, in part, due to the complexity of exposures to this pollutant source, as well as the

numerous biological pathways that may mediate response [4–7]. It is possible that more sensi-

tive measures of both exposure and response may help identify critical components of TRP

and their complementary pathways impacting human health.

Environmental metabolomics has emerged as an approach for sensitively quantitating

thousands of chemical signals in a biological sample, providing broad spectrum measurements

of human metabolism that may be indicative of environmental chemicals [8]. Metabolomic

perturbations have been associated with occupational air pollution exposures [9, 10]. Walker,

et al., employed high-resolution metabolomics (HRM), using sensitive liquid chromatogra-

phy-mass spectrometry (LC-MS), coupled with advanced bioinformatics methods, as a plat-

form linking exposure to internal doses and biological responses. Occupational exposures to

trichloroethylene and likely metabolic products were measurable in blood and correlated with

expected detoxification pathways [10]. Recently, ambient air pollution exposures have also

been found to associate with metabolic perturbations in humans using untargeted approaches

[11].

Panel studies of commuting populations provide an exceptional platform to observe poten-

tial acute effects of traffic pollution in humans using realistic exposures. This design can harbor

the strength of high contrasting exposures [12], while limiting risk to participants to what may

be experienced in real-world contexts [13]. We have previously employed panel-based designs,

with quasi-experimental exposures, in targeted biomarker analyses following exposures to

TRP [13–15]. By introducing repeated biological sampling, researchers can disentangle short

term changes in key biological endpoints, such as inflammation and lung function [16] and

potentially reveal new insights on TRP toxicity in humans.

The present analysis leverages extensive measurement collected within a scripted, longitudi-

nal panel of car commuters and novel HRM profiling to investigate potential perturbations of

the plasma metabolome following exposures to TRP. The Atlanta Commuters Exposure

(ACE) panel study included a targeted examination of oxidative stress and inflammation for a

suite of cardiovascular and respiratory outcomes associated with on-road traffic exposures

during morning rush hour car commutes in Atlanta, GA [17, 18]. In-vehicle exposures to

Air pollution metal exposures and the human metabolome
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PM2.5, its components, and noise were measured for 60 participants along with repeated bio-

logical sampling of numerous heart, lung, and inflammation-related endpoints. Here, we

present results examining associations between: 1) specific TRPs with known markers of

inflammation and lung function, including forced expiratory volume and high sensitivity C-

reactive protein; 2) TRP with perturbations of the metabolome measured twice over a 10h

duration; and 3) targeted markers of inflammation and lung function with perturbations of

the metabolome. The rationale for the approach arose from the breadth and depth of informa-

tion available to the researchers from the ACE population and a need in the field to compare

hypothesis-driven, targeted measures of response to hypothesis-free, untargeted measures of

response. The strength of this analysis is centered around the presence of both known, targeted

markers of biological response, with unknown, targeted metabolic features critical for estab-

lishing discovery-phase science, as well as a highly-speciated personal exposure assessment for

each participant, often lacking in human observational studies.

Materials and methods

Study design

The ACE study was a longitudinal panel of 60 participants conducted in Atlanta, GA from

2011 to 2013. The design, participant characteristics, and exclusion criteria have been previ-

ously discussed [17–19]. This analysis focuses on a subset of 49 participants within the com-

plete panel for which plasma samples were available. In brief, the study participants were

measured for inflammatory and cardiorespiratory responses before and after conducting two

of three distinct exposure scenarios. The three, 2-hr exposure scenarios were highway, side

street, and indoor clinic environments during morning rush hours (approximately 7 to 9 AM).

Each was scheduled a week apart and one was necessarily a highway exposure. The study pro-

tocol and materials were approved by the Institutional Review Board of the Rollins School of

Public Health of Emory University (IRB Study Number 47904). All participants provided writ-

ten informed consent.

Exposure assessment

In-vehicle and clinic pollutant sampling was conducted during the exposure period as described

previously [20] with characterizations previously published [17]. We focused on particulate matter

and specific particulate components with the potential to elicit oxidative stress in humans. We

measured PM2.5 mass, black carbon (BC), particle-bound polycyclic aromatic hydrocarbons (pb-

PAHs), particle number concentration (PNC), and noise (dB) continuously using instrumenta-

tion housed in a sampling apparatus located in the passenger seat or clinic room during sampling

periods [21]. These continuous measures, captured in 1-second intervals, were time-averaged to

1-minute concentrations for each TRP. We also extracted particulate mass from either quartz or

Teflon substrates to characterize 2-hr integrated elemental metal (Al, Pb, and Fe), total organic

carbon (OC), and water-soluble organic carbon (WSOC) concentrations. Elemental concentra-

tions (pg/mL) and carbon fraction concentrations (μg/m3) were measured using ICP-MS and

TD-GC-MS, respectively. This subset of pollutants was chosen a priori based upon previously

demonstrated associations with traffic or mobile source emissions [18, 21].

Biological sampling

Sampling and targeted biomarker analysis are outlined in detail elsewhere [17]. Briefly, a panel

of inflammatory and oxidative stress markers was collected at multiple time points before and

after each commute. Respiratory markers exhaled nitric oxide (eNO), forced expiratory

Air pollution metal exposures and the human metabolome
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volume (FEV1) and blood-based markers were collected concurrently at both pre-exposure

(7AM) and post-exposure (9AM). Dried blood spots were analyzed for high-sensitive C-reac-

tive protein (hs-CRP), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-1β (IL-1β), tumor

necrosis factor α (TNF-α), soluble intercellular adhesion molecule (sICAM) and soluble vascu-

lar cell adhesion molecule (sVCAM) using multiplexed inflammatory and vascular injury pan-

els (Luminex). eNO was measured using a NIOX Mino (Circassia) and FEV1 was measured

using a handheld spirometer. The present analysis focuses on the differences between post-

(9AM) and pre-exposure (7AM) measurements of these respiratory and inflammatory mark-

ers (ΔBiomarkers). Previously, our group showed that lung function markers changed imme-

diately post-exposure from baseline while temporal patterns of blood-based markers were not

statistically significant at any time point [17]. In choosing the 7AM and 9AM measures, we

believed to capture a temporal window that most closely matched the exposure measures

(ΔBiomarkers and Exposure are data combined in S1 Datasets).

Whole, venous blood was collected pre-commute (7AM) and post-commute (6PM). Blood

was collected from the arm, usually the cubital vein, into purple topped containers (containing

ethylenediamineacetic acid). Samples were spun, and plasma supernatants were aliquoted

immediately after collection. All plasma was stored at -80˚C.

High-resolution metabolomics

Metabolomics was completed using established methods [8, 22]. Plasma samples were diluted

two-fold with acetonitrile and analyzed in triplicate using a dual-chromatography, high-reso-

lution mass spectrometry system (Dionex Ultimate 3000; ThermoScientific QExactive). Ana-

lyte separation was accomplished using reverse-phase C18 liquid chromatography (Targa C18

2.1mm x 100mm x 2.6μm, Higgins Analytical) with mass spectral detection completed in posi-

tive and negative mode electrospray ionization at 70,000 (FHWM) resolution over a mass-to-

charge ratio (m/z) range of 85 to 1250. For quality control, all sample batches included two

replicates of a pooled reference material. NIST SRM 1950 was also included at the beginning

and end of all study samples. Concentrations of select metabolites were determined by refer-

ence standardization using the positive mode data only [23].

Raw data files were processed in R for feature extraction and quality control using the

hybrid mode of adaptive processing of liquid chromatography mass spectrometry (‘apLCMS’)

[24] with modifications by ‘xMSanalyzer’ [25] to generate the final feature tables used for anal-

ysis (Final tables within S1 Datasets). To improve detection of low abundance metabolites

and environmental chemicals, a reference data base of known metabolites was provided to

apLCMS which comprised of blood metabolites from the Human Metabolome Database v. 3.6

and a list of 1,209 compounds from the Environmental Protection Agency’s Mobile Source Air

Toxics Inventory. Detected features were defined as a unique ion identified by its m/z, reten-

tion time (RT), and intensity. This algorithm was run separately for each of the positive and

negative mode raw spectrograms with respective lists of ion adducts optimized for the metabo-

lomics platform. Only those features that were reproduced over two, distinct iterations of

apLCMS, exhibited median coefficients of variation (CoV) across technical triplicates less than

30%, and were detected in at least 10% of the biological samples were included in the statistical

analysis. Values below the analytical limit of detection (LOD) for each feature were imputed

with LOD/2.

Statistical analysis

Microenvironmental concentrations were first compared with corresponding changes in tar-

geted biomarker levels with subject as a random effect using mixed effect models to explore

Air pollution metal exposures and the human metabolome
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direct association between exposure and targeted biological responses [17]. Metabolomics data

were analyzed in two ways, focusing first on environmental (Exposureij) associations, and then

on targeted biomarker (ΔBiomarkerij) associations. The approach comprised feature selection

by metabolome wide association (MWAS) and human metabolic pathway enrichment of sig-

nificant features performed on each ion mode separately [10].

Statistical analyses were conducted using the R Statistical Platform (v. 3.3.1) packages

‘xMSanalyzer,’ ‘apLCMS,’ and ‘limma’ [25–27]. Associations between TRP and the targeted

biomarkers were conducted using linear mixed effect regression models described, in detail,

previously [17]. HRM data were first log2-transformed before being analyzed using the R sta-

tistical package ‘limma.’ ‘Limma’ is designed to run mixed effects models on high dimensional

data and moderate t-statistics using an empirical Bayes method for shrinking standard errors

[26]. The package was created for RNA sequencing analyses; however, the data have structural

similarities. For example, RNA sequencing data is a collection of color intensities at specific

probes and spectral data is a collection of signal intensities at specific mass to charge ratios.

The chosen model specifications examine the associations between the fluxes of metabolo-

mic profiles at 10 hours apart with either exposure during the ‘commute’ period or the flux of

targeted biomarkers around the commute period. All models included categorical co-variates

to control for the potential effects of asthma status, age, sex, body mass index (BMI), and race

without explicit control of the exposure setting. We first modeled associations between pre- to

post-exposure changes in metabolite intensities (‘ΔFeatureij’) and corresponding pollutant

exposure metrics (Exposureij) (Model 1). Directly measured pollutants, PM2.5, OC, BC,

WSOC, pb-PAHs, PNC, noise, Al, Fe, and Pb, were examined, in turn, as continuous vari-

ables.

DFeatureij ¼ mþ yi þ b1Exposureij þ b2Asthmai þ b3Agei þ b4Sexi þ b5BMIi þ b6Racei
þ εij; ðModel 1Þ

where j indexes commute day, i indexes subject, yi � N 0;pð Þ; εij � N 0;s2ð Þ; and p ¼

Pk

1
t2

k

� �

15%

-the trimmed mean of intra-individual variability.

The second model examined associations between ΔFeatureij and corresponding pre- and

post-exposure changes in eNO, FEV1, hs-CRP, TNF-α, IL-1β, IL-6, IL-8, sICAM, and sVCAM

(ΔBiomarker) (Model 2).

DFeatureij ¼ mþ yi þ b1DBiomarkerij þ b2Asthmai þ b3Agei þ b4Sexi þ b5BMIi þ b6Racei
þ εij; ðModel 2Þ

where indexing of variables and errors are as described for Model 1.

Each set of results—defined by the combination of primary predictor and ion mode—con-

tained p-values and moderated t-statistics for all ΔFeatureij. The p-values were adjusted

for multiple comparisons using the Benjamini-Hotchberg false discovery rate (FDRB-H) at

FDRB-H< 0.05 [28]. We used Manhattan plots of the -log10(p) over feature retention time with

the average direction of change between post- and pre-exposure metabolite intensities as a

means of visualizing significant associations from the mixed effects models.

Human metabolic pathway enrichment and putative feature identification

We conducted pathway analysis using mummichog (v. 1.0.7) and ran separate analyses for

each set of features from the linear mixed models using both positive and negative mode

Air pollution metal exposures and the human metabolome
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features [29]. Mummichog takes provided features and tests modules of in predefined net-

works and the biological pathways to statistically test presence of significant features on net-

works of human metabolism, permitting increased confidence in feature identification. Lists

of significant features from MWAS were identified with an FDRB-H < 0.05 and further

restricted for peak quality by extracted ion chromatograph (EIC) filtering. The human refer-

ence pathway for mapping came from MetaFishNet [29], a compilation of KEGG, Edinburgh

Human Metabolism Network, UCSD BiGG, and BioCyC network metabolism models.

Matches to the pathways were made within 10 ppm to measured feature m/z ratios. Pathways

were considered strong candidates if at least 3 nodes from the experimental data overlapped

with pathway nodes and the mummichog permutation-based enrichment score, s, was less

than 0.10. Human metabolic pathway enrichment results were compared within and across

exposure and biomarker set lists for overlapping pathway enrichments.

Results

Forty-nine of 60 participants (82%) in the ACE study provided venous blood over 73 different

sampling days. Participants not contributing blood samples were those enrolled in the study

prior to the approval of the venous blood collection protocol. Sixty-nine of those 73 sampling

days (95%) were complete samplings, meaning blood was collected both pre- and post-expo-

sure for the individual on a given sampling day. This subpopulation formed the final analytical

subset, for whom matching respiratory, inflammatory, and oxidative stress markers were also

available. Population characteristics and exposures are summarized in Table 1 and Table 2,

respectively. Broadly and as reported previously [13, 17], exposures to many of the TRP expo-

sures were elevated in commutes relative to ambient concentrations. Some particulate pollut-

ants and noise differed between highway and non-highway commutes, but not metals or

WSOC (Table 2).

Pre-commute concentrations of select plasma metabolites are provided in S2 Table, con-

firming reliability of metabolomic profiling because the concentrations of known metabolites

were within previously reported levels in a human population [30]. Specific amino acids were

above or below reported mean ranges in HMDB. Specifically, the study population compara-

tively lower in asparagine, citrulline, glutamine, leucine/isoleucine, and tryptophan while glu-

tamate and proline were comparatively higher than HMDB values. Plasma concentrations of

eight amino acids and carnitine differed between asthmatics and non-asthmatics. The MWAS

of exposure included both positive (S4 and S5 Figs) and negative (Fig 1 and S3 Fig) ionization

Table 1. Participant heath characteristics.

Participant Characteristics

N 49

Age in years 26 (5)

Female 47%

Race

White 64%

Asian 20%

Other 16%

Health Status

BMI (kg�m2) 23.15 (3.53)

Asthma Diagnosed 53%

Values are mean (SD), unless noted otherwise.

https://doi.org/10.1371/journal.pone.0203468.t001

Air pollution metal exposures and the human metabolome
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modes. The positive mode captured 7,390 features with a median CoV of 13.5%. The negative

mode included 14,341 detected features with a median CoV of 14.5%.

Associations between TRP and ΔBiomarkers were largely consistent with the null (Table 3).

Pb, however, was negatively associated with Δhs-CRP (β = -20.1%; p< 0.005) and ΔsICAM

(β = -24.2%; p< 0.001) indicating, on average, a 22% reduction in the acute phase protein and

intercellular adhesion molecule-1 per 1 ng/m3 increase in Pb exposure. We observed smaller

reductions in ΔIL-8 with increases in pb-PAH, PNC, and noise (p< 0.05). We did not observe

association with ΔIL-6 and any of the exposure measures used. Notably, many IL-6 levels were

distributed below analytic detection (n = 32, 46% below limit of detection) (S2 Table).

Table 2. Mean in-vehicle exposures by commute type.

Exposure Characteristics

Commute Type (N)

Highway 36

Non-Highway 37

PM2.5 (μg�m-3) a

Highway 17.14 (6.18)

Non-Highway 11.18 (8.58)

BC (μg�m-3) a

Highway 5.33 (2.23)

Non-Highway 1.58 (1.43)

OC (μg�m-3) a

Highway 7.66 (1.98)

Non-Highway 6.07 (1.70)

WSOC (μg�m-3)

Highway 8.48 (3.75)

Non-Highway 7.95 (3.45)

PNC (#�m-3) a

Highway 34,808 (12,918)

Non-Highway 10,649 (8,147)

pb-PAH (μg�m-3) a

Highway 113.93 (30.51)

Non-Highway 65.21 (38.94)

Noise (dBA) a

Highway 68.59 (2.73)

Non-Highway 58.40 (11.23)

Aluminum (Al) (ng�m-3)

Highway 29.36 (28.67)

Non-Highway 24.37 (19.71)

Iron (Fe) (ng�m-3)

Highway 176.33 (171.19)

Non-Highway 121.55 (115.99)

Lead (Pb) (ng�m-3)

Highway 0.45 (0.45)

Non-Highway 0.92 (1.64)

Values are mean (SD), unless noted otherwise.
adenotes p < 0.05 for Student’s t test

https://doi.org/10.1371/journal.pone.0203468.t002

Air pollution metal exposures and the human metabolome
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Fig 1. Manhattan plots of associations between changes in negative ionization mode feature intensities with in-vehicle, traffic-related pollutants. Colored points

are significant at FDRB-H < 0.05 and indicate average increase (red) or decrease (blue) in feature intensity.

https://doi.org/10.1371/journal.pone.0203468.g001

Table 3. Percent change in biomarker per unit increase in exposure.

Δhs-CRP ΔTNF-α ΔIL1β ΔIL6 ΔIL8 ΔsICAM ΔsVCAM ΔeNO ΔFEV1

BC 0.87 -2.09 -1.72 -2.18 -2.10 -0.08 0.50 -0.32 -0.32

OC 4.97 -1.53 -8.62 -6.35 -3.21 9.50 9.98 -2.02 -0.47

WSOC 1.88 2.29 -0.57 — 0.05 1.36 2.64 -0.27 0.12

pb-PAH -0.10 -0.04 -0.16 -0.46 -0.23a -0.03 0.07 -0.06 -0.02

PNC 0.50 -0.08 <0.01 -0. 78 -0.55a 0.58 0.61 -0.20 <-0.01a

Noise -0.63 -0.77a -1.07 1.21 -0.80a -0.85 -0.54 -0.14 -0.02

Al -0.05 -0.13 0.42 0.37 0.07 -0.30 -0.23 0.05 -0.02

Fe -0.03 -0.04 0.01 -0.09 -0.01 -0.04 -0.02 <-0.01 -0.01

Pb -20.14a 0.84 -7.13 -5.15 0.81 -24.21a -31.09 -0.16 0.07

PNC % change reflect change in concentration in thousands (1,000s) of particles
aIndicates p-value significant at α< 0.05;—indicates a model that did not converge

https://doi.org/10.1371/journal.pone.0203468.t003
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Many TRP exposures were not associated with ΔFeatureij; however, concentrations of par-

ticulate metals Al, Fe, and Pb were associated (FDRB-H < 0.05) (Fig 1; S4 Fig). In the positive

mode, 42 total features were associated with either Pb or Fe. MWAS of the negative mode

identified 11, 6, and 91 features significantly associated (FDRB-H < 0.05) with Al, Fe, and Pb,

respectively (Fig 1). Overall, the average change in concentrations showed a decrease from

pre-commute levels for all metal-associated features. As a means of identification of these sig-

nificant features, we matched the masses of the features with metabolic networks through a

pathway analysis (Negative mode: Fig 2). Mummichog was unable to identify putative path-

ways with any statistical significance for Al-associated and Pb-associated features (p ~ 1.0)

from the positive mode nor converge for other pollutant models, likely due to the small num-

ber of features identified through the MWAS modeling. However, the negative mode features

were more successful at mapping onto reference pathways. Al-associated features enriched for

arachidonic acid and leukotriene biosynthesis. Three Al-associated features map onto the leu-

kotriene biosynthesis pathway, which has a membership of 53 nodes (s < 0.04). 20-OH-leuko-

triene B4 (molecular weight: 352.225 Da) was a top predicted metabolite and, on average,

decreased in intensity in the population over time.

Prior to the pathway analysis, correlations of ΔBiomarkers with significant features from

the combined set of exposure-associated ΔFeatureij was conducted. We did not observe signifi-

cant correlations with exposure-associated ΔFeatureij after multiple hypothesis test correction.

However, in the ΔBiomarkers MWAS, changes in pro-inflammatory cytokines and acute-

Fig 2. Pathway enrichment of exposure-based (left) and biomarker-based (right) significant features. Colored bars indicate the -log10(s) of enrichment scores from

mummichog, a network-based pathway analysis tool. Numbers in parentheses indicate the ratio of matching features onto a human reference pathway.

https://doi.org/10.1371/journal.pone.0203468.g002
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phase hs-CRP, but not respiratory or lung oxidative stress markers, were associated with ΔFea-

tureij (S3 Fig). IL-6, hs-CRP, IL-1β, and IL-8 had 60,47, 47, and 53 significant features across

both ionization modes, respectively. There was substantial overlap in features between IL-6

and hs-CRP separately between IL-1β and IL-8. A single feature was shared across all four

models. (S2 Fig). Enriched pathways associated with these biomarkers included amino acid

metabolism, leukotriene metabolism, and ubiquinone biosynthesis.

We summarized the significant results schematically (Fig 3). Overlap between Exposure-

associated and ΔBiomarkers-associated MWAS was minimal, showing very few shared fea-

tures and only one shared, enriched pathway.

Discussion

Ascertaining TRP components that elicit adverse health response has been challenging. The

absence of exposure science tools capable of cost-effectively capturing both environmental

exposures and biological responses in humans may be filled through HRM. In the present

study, we augmented exposure characterization of an in-vehicle environment and biomonitor-

ing of oxidative stress and inflammation in a small human panel with plasma HRM. A key

Fig 3. Representation of combined results of MWAS and pathway enrichment of both Exposure and ΔBiomarkers. Significant predictors or enriched

pathways (p < 0.05 or s< 0.10) are explicitly named. Particulate metal exposures were the exclusive in-vehicle, traffic related pollutants associated with changes

in 110 features of the plasma metabolome. Few significant features overlapped between Exposure-associated and ΔBiomarkers-associated features. Leukotriene

metabolism was enriched from Al-associated features and ΔIL-6-associated features.

https://doi.org/10.1371/journal.pone.0203468.g003
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observation was the association between particulate metal exposures, especially Pb, with 2-hr

changes in targeted inflammatory markers (hs-CRP and sICAM) and 10-hr associations with

metabolic perturbations in lipid mediators of inflammation and nucleotide driven antioxida-

tion. This is one of the first indications of a directly-measured traffic pollutant associated with

changes in human metabolomic profiles. Moreover, we believe these current findings support

the utility of HRM as creating multi-pollutant indicators of acute xenobiotic exposure within

panel study designs [10, 31].

Collectively, we showed that enriched pathways overlap or are complementary to inflam-

matory and redox reactions (Fig 3). Three key insights arose from these data: 1) particulate

metals or sources containing metals from a morning commute are consistent with an oxidative

stress response; 2) functional analysis of significant metabolomic features showed 2-hr changes

of inflammatory cytokines and acute-phase protein to be associated with antioxidant path-

ways; and 3) that, in this human panel, HRM reflected some acute effects of traffic exposure,

provided a case-crossover design and a narrow temporal window.

Observed associations across exposures from MWAS suggest covariance between particu-

late metals in the traffic-related exposures. These metals may serve as tracers for a traffic-

related dust source. Potential sources identified from commuter studies by our group include

‘crustal’, ‘non-tailpipe emission’, ‘resuspended road dust’, or ‘brake pad and tire wear’ as

descriptors of components of the traffic pollution mixture in vehicle cabins. These similar,

complex sources share qualities such as enrichment of Al, Fe, and transition metals [18, 21].

Combining both ACE commuter studies, Krall, et al., reported robust associations of ‘non-tail-

pipe emissions’—enriched with several metals like Fe—with pulmonary response in the sus-

ceptible, asthmatic population. Together, these highlight the elevated presence of metals in a

roadway commuting environments and the potential for these pollutants to elicit biological

responses through oxidative stress.

Particulate metals have been identified as contributors to cardiovascular disease morbidity

[32] and mortality [33]. Transition metals, such as Fe, are redox-active—where the metal ion

can serve as both electron acceptor and donor in reactions to generate radical ions. Such met-

als can promote oxidative stress through redox cycling or quenching antioxidant capacity [34].

These toxic processes have demonstrated inductions by near roadway PM. Pardo, et. al., found

both PM extracts from a roadside monitor and a simulated metal solution, including Al, Fe,

and Pb, increased IL-6 and TNF-α in murine bronchoalveolar fluid over a 24-hour period

with returns to baseline by the 48-hr measurement [35]. In another l mouse model, acute

instillation of urban air particles (at 1mg/kg) resulted in 3-hr increases in TNF-α and IL-6 with

resolution before a 24-hr measurement [36]. In contrast, ΔTNF-α and ΔIL-6 were not associ-

ated with any metal exposures in our commuting population, but Pb was associated with Δhs-

CRP and ΔsICAM. For each unit increase in Pb exposure, the percent change in these bio-

markers averaged a 22% decrease over a 2-hr period. This decrease is contrary to expectation

[37, 38]. One possible explanation may be the potential confluence of circadian patterns of

inflammatory markers and the rapid resolution of inflammatory signaling [36] that may result

in our observed depression. Our findings indicate that increased short-term metal exposures,

specifically Pb, may be responsible for an acute inflammatory response that resolves within a

10-hr window in humans.

The metabolomics analyses suggest that a morning exposure to particulate metals elicit

detectable perturbations in leukotriene, arachidonic acid, and tryptophan metabolism over a

10-hr period. Association of tryptophan metabolism with Pb exposures is consistent with the

evidence of lead, although redox-inactive, participating in the depletion of antioxidants [34,

39]. While Al is also redox-inactive, it does demonstrate the ability to shift biological systems

into oxidative stress [40]. Of Al-associated features, two (m/z: 350.2105 and 350.2102) drive
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the enrichment of leukotriene and arachidonic acid pathways and suggest an average decrease

of these features across the study population after controlling for potential confounders and

asthma status over the 10-hr period. These two features match a metabolite of proinflamma-

tory chemoattractant leukotriene B4 (LTB4): 20-OH-LTB4. IL-6-associated features also

enriched for leukotriene pathways, providing a concordance with the exposure-based enrich-

ments. Metabolites of LTB4, 20-OH-LTB4 and 12-oxo-10,11-dihydro-20-COOH-LTB4, were

putatively identified in mummichog.

Leukotriene B4 in breath has been associated with the inflammatory response to traffic

exposures [41], where long-term traffic exposures, assessed by land use regression models esti-

mating exposure to PM2.5, were shown to be associated with increased LTB4 measured in

induced sputum (2μg/m3 PM2.5: ~23% CI95%(4%-42%) LTB4). Some attention has grown for

leukotrienes in response to TRP exposures. Rabinovitch, et al., (2016) recently reported

increases (24% CI95%(1.5%,51.5%)) in urinary cysteinyl leukotriene (LTE4) after very short-

term exposures to PM2.5� 5μg/m3 in asthmatic children [42]. The cysteinyl leukotrienes,

LTC4, LTD4, and LTE4, are created from the enzymatic reactions of LTA4 and glutathione

(Fig 4). These leukotrienes operate extracellularly, binding to receptors of neighboring cells

and promote vascular permeability [43].Putatively identified 20-OH-LTB4 was associated with

both Al exposures and ΔIL-6 in our metabolomics population. Δhs-CRP-associated features

had substantial overlap with ΔIL-6-associated features (S2 Fig), and enriched for leukotriene

metabolism, but not with at least 3 features mapping onto the pathway. Together, these results

suggest inactivated leukotrienes in various forms are responsive to TRP exposure.

Outside of the metabolomics analysis, associations between TRP exposure and changes in

targeted biomarkers (ΔBiomarkers) were not consistent between the entire ACE population

and the subset for which plasma blood draws were available (results not shown). In the total

ACE population, OC was the only pollutant associated with biomarkers in dried blood spots

(Δhs-CRP and ΔsVCAM). This association was not reproduced in the blood draw subset.

Other pollutants (pb-PAH, PNC, noise, and lead) were associated with ΔIL-8, ΔsICAM,

Δhs-CRP, and ΔTNF-α in the blood draw subset and not in the total ACE population. This dis-

crepancy is indicative of the challenges faced in air pollution studies focusing on hypothesized,

targeted biomarkers of effect on inflammatory and oxidative stress pathways [3, 44]. Within

our study, plausible reasons exist for the discrepancies between the full data and the subset

including1) the presence of false positives due sampling of whole blood after the already study

began; 2) technician measurement error in sample handling and processing; or 3) the chance,

natural variability of the markers measured. Despite these differences, the addition of HRM

with our workflow afforded consistent insights by measuring changes in the human plasma

metabolome (ΔFeature) at relevant time scales and capturing markers used in air pollution

studies.

There are other caveats and limitations of this analysis that warrant attention and have the

potential to inform future air pollution metabolomic study designs. Importantly, metabolic

expression is sensitive to inter-personal variability [45]. We controlled, at least in part, for

diurnal variation in biomarker levels, participant sex, age, asthma status, obesity, and metro

Atlanta residency, although unspecified confounding may be still be present. Our choice to

define ΔBiomarkers as the difference in measurements from pre-commute (7AM) to post-

commute (9AM) was done to reduce the likelihood of capturing responses due to unmeasured

exposures, especially since temporal trends in the cytokine markers were not significant from

baseline measures [17]. Sartini, et al., demonstrated in an older male population that IL-6, a

key measure of our study, increased almost linearly over a day but without relevant impact on

cardiovascular disease risk [46]. In contrast, hs-CRP has been reported to be at most minimally

associated with time of day [47, 48]. Repeated measures and contrasting exposures within
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study participants was a strength where changes in measurements over time can be explored

with partitioning of inter- and intra-individual variability [49], and may have provided analyti-

cal improvement over cross-sectional analyses for causal inference [9].

Fig 4. Pathway of leukotriene biosynthesis and catabolism in humans. Leukotriene metabolism was the only pathway to be enriched for in both exposure-

based and biomarker-based models using mummichog (overlap� 3 and s� 0.10). The features selected with Al, Pb, and ΔIL-6 models have overlapping

matches on this pathway with 20-OH-LTB4. The metabolite putatively detected is a biologically inactive form of leukotriene B4. Arachidonic acid metabolism

and glutathione synthesis feed into the pathway to generate the variety of signaling molecules on this pathway. Adapted from MetaCore by Thomson Reuters.

https://doi.org/10.1371/journal.pone.0203468.g004
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The ACE study protocol included self-reported food intake over the study days, but did not

explicitly control diet (except for the consumption of nitrate rich foods and leafy greens).

Thus, aspects of diet may still contribute confounding. A future analysis may consider includ-

ing dietary food logs, nutritional assessments, or standards of common foods known to pro-

mote pro-inflammatory responses in humans [50].

As a first step to using HRM in air pollution panel studies, our motivation was to find the

strongest evidence of an environmental exposure predicting changes in the metabolomes. At

the MWAS stage, features were significant if the FDR < 0.05 and their EICs indicated reason-

able quality. For pathway enrichment, we again restricted our examination to pathways with 3

matching nodes and enrichment scores, s, < 0.10. Our stringent standards likely also hide

greater breadth of true human metabolic response to TRP exposure. Relaxing the FDR crite-

rion to< 0.20 would not have appreciably changed the results of our Exposure MWAS find-

ings. However, relaxing the FDR of ΔBiomarkers models would have greatly expanded the

number of potential pathways to consider at the expense of specificity to traffic exposure.

Only three variables representing particulate metal exposures were associated with meta-

bolic perturbations. Other widely used TRP parameters, such as PM2.5 mass and PNC, had no

association. We explored categorical exposures (e.g., Highway vs. Non-commute exposure sce-

nario) (data not shown) and found no significant associations up to an FDR of< 0.20. In our

view, rich exposure characterization, which included metal content, at the microenvironmen-

tal level aided in our discovery, but also spoke to the importance of actual pollutant measure-

ment in similar human observation designs. Perturbations in plasma metabolomes as a result

of ambient air pollution exposures have recently been reported using targeted [51] and untar-

geted [31] metabolomic profiling. The latter, like the current study, used repeated biological

measures and detailed exposure characterization, including trace metal composition, to cap-

ture the dynamic nature of high-dimensional exposure and biological responses.

Finally, it is worth reiterating the interpretive challenges involved in an untargeted, HRM

analysis. Extracted features are typically matched by m/z alone to annotation and network

databases. This results in ‘many-to-many’ matches of features to compounds in the databases.

For example, 2,716 features, less than 20% of the total supplied to mummichog (n = 14,282)

for Pb-based enrichment, matched 7,309 compounds on the human metabolic network. This

expansion is then reduced by network analysis, vastly improving interpretability [29]. Never-

theless, there remains a large proportion of unknown metabolites that are changing in

response to Pb exposure. Relatedly, the use of m/z alone for matching also belies degeneracy—

the presence of isotopic versions of features. Two features may be isotopes of the same metabo-

lite but may match to separate compounds in high-resolution online databases. However, in

our approach, we filtered significant features from the MWAS through examination of

extracted ion chromatograms. Annotation and pathway analysis was performed on features

that had clear, dominant peaks with reasonable tolerance of isotopic peaks. We believe this

served to reduce the chance of misspecification of feature annotation. Like others at the stage

of pathway enrichment, our data provide strong suggestions of pathway level perturbations,

but feature validation is ultimately necessary. Before the substantial investment in chemical

standards and reanalysis of samples, examining correlations between leading features and

hypothesized, observed outcomes may provide confidence in the putative identification of

important compounds [52]. We explored the correlations of the putative 20-OH-LTB4 fea-

tures with the remainder of the measured metabolome and clinical changes in neutrophils or

eosinophils from complete blood counts in our population and found no significant associa-

tions (results not shown). We found either no further support for leukotriene metabolite identi-

fications, or, perhaps, observed changes that were subclinical and focused. Either definitive
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identification of specific features using MS/MS or reliable reference standards can improve the

certainty of our results.

Collectively, we believe the results of this analysis provide evidence that HRM can serve as a

sensitive tool of external, air pollution exposures, when used within a quasi-experimental

human panel. Our environmental measures went beyond standard air pollution sampling

practices used in large population studies. These advantages in study design and data capture

enhanced our ability to capture changes in human metabolism with respect to TRP exposure.

While there is additional support in the air pollution literature of acute oxidative stress

response in humans mediated via exposures to particulate metal exposures, detection of this

response using metabolomic profiling around traffic related exposures warrants replication.

The general inconsistencies of inflammatory markers and their associations with certain PM2.5

components necessitate additional studies to provide added confidence in our current find-

ings. For the purposes of bioeffect screening, plasma HRM was useful in providing interpret-

able results. Further study should improve upon repeated sampling of plasma with shorter

windows and multi-day sampling after single exposures in a human population. If our metabo-

lomic sampling of plasma echoed the sampling of dried blood spots—used for targeted bio-

markers in this study—then perhaps pro- and anti-inflammatory processes associated with

TRP can be tracked over time. Finally, while much of air pollution toxicology research focuses

on proinflammatory markers of response, we show cause to study pro-resolving mediators as

well. For example, targeting eicosanoids, specifically LTB4, in a future iteration of a traffic

exposure metabolomics study may improve our understanding of the interplay of systemic

inflammation in acute response.

Conclusions

HRM can detect plausible changes in the plasma metabolome in response to traffic related pol-

lution in a commuter panel study. In-vehicle particulate metal exposures were associated with

within-day perturbations of several pathways; however, one metabolic pathway, leukotriene

metabolism, was also associated to changes in proinflammatory cytokines.
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