1,212 research outputs found

    Comparative value of full-fat corn germ, whole cottonseed and tallow as energy sources for lactating dairy cows

    Get PDF
    We used 24 multiparous Holstein cows in 4 x 4 Latin square design to evaluate full-fat corn germ as a replacement for whole cottonseed and tallow in total mixed diets for lactating dairy cows. Experimental diets on a dry matter basis were: 1) control 3.5% fat; 2) whole cottonseed 5.1% fat; 3) tallow 5.1% fat; 4) full-fat corn germ 5.1% fat. Diets were fed as total mixed rations typical of that fed on commercial dairy operations. Cottonseed meal and cottonseed hulls were included in the control, tallow, and full-fat corn germ diets to balance for fiber and protein fractions equal to those in the whole cottonseed diet. Dry matter intake, milk production, and energy corrected milk did not differ among the diets. Milk from cows fed full-fat corn germ contained less fat than milk from cows fed whole cottonseed but was similar to that of milk from cows fed control or tallow diets. Milk protein percentage was lower for cows fed full-fat corn germ than those fed control, but similar to cows fed whole cottonseed or tallow. Percentage milk lactose did not differ among dietary treatments. Cows fed WCS produced more pounds of milk fat than cows fed full-fat corn germ or tallow, but protein and lactose yield did not differ among the diets. Cows fed whole cottonseed produced milk more efficiently than cows fed control, tallow, or full-fat corn germ. Unexpectedly, efficiency of energy corrected milk production was not improved by tallow and tallow did not depress dry matter intake. Somatic cell count did not differ among experimental diets. Urea nitrogen concentration was lower in milk from cows fed full-fat corn germ and tallow than those fed whole cottonseed. All diets led to gains in body weight. The handling and storage characteristics of full-fat corn germ enhances its desirability as a feedstuff for dairy cattle. Full-fat corn germ supported milk production as well as whole cottonseed but not milk fat percentage or fat yield at the level fed in our diets. Additional studies need to be conducted to determine the most advantageous amount to feed full-fat corn germ and clarify the mechanisms by which it depresses milk fat production.; Dairy Day, 2002, Kansas State University, Manhattan, KS, 2002

    Evaluation of the Removal of Organic Sulfur from Coal

    Get PDF
    As the removal of sulfur from coal prior to combustion acquires more importance in order to meet evermore stringent antipollution regulations, research on the development of methods for the cleaning of coal continues to expand. Reviews are available which describe the various methods for desulfurizing coal (1, 2, 3). The sulfur content in coal is usually a few per cent, but it can range from less than 0.5 per cent to as much as 8 per cent or more. Much of the sulfur is inorganic in nature, occurring in discrete mineral phases; the inorganic sulfur is mostly pyrite with small amounts of sulfates such as gypsum. Part of the sulfur in coal is termed organic sulfur, being intimately bound to the organic coal matrix. The chemical nature of this organic sulfur is not well established. During the desulfurization of coal, some of the coarse inorganic sulfur components can be removed

    Mach-Zehnder fiber interferometer test of the anisotropy of the speed of light

    Full text link
    Two optical fiber Mach-Zehnder interferometers were constructed in an environment with a temperature stabilization of better than 1 mK per day. One interferometer with a length of 12 m optical fiber in each arm with the main direction of the arms perpendicular to each other. Another with a length of 2 m optical fiber in each arm where the main direction of the arms are parallel as a control. In each arm 1 m of fiber was wound around a ring made of piezo material enabling the control of the length of the arms by means of a voltage. The influence of the temperature on the optical phase difference between the interferometer arms was measured. It is attributed to the temperature change induced variation of the interaction region of the optical fiber couplers. Further, the influence of rotation of the interferometers at the Earth surface on the observed phase differences was determined. For one interferometer (with the long and perpendicular arms) it was found that the phase difference depends on the azimuth of the interferometer. For the other one (with the short and parallel arms) no relevant dependence on the azimuth has been measured.Comment: Errata: data of interferometers were interchange

    Selected nucleon form factors and a composite scalar diquark

    Get PDF
    A covariant, composite scalar diquark, Fadde'ev amplitude model for the nucleon is used to calculate pseudoscalar, isoscalar- and isovector-vector, axial-vector and scalar nucleon form factors. The last yields the nucleon sigma-term and on-shell sigma-nucleon coupling. The calculated form factors are soft, and the couplings are generally in good agreement with experiment and other determinations. Elements in the dressed-quark-axial-vector vertex that are not constrained by the Ward-Takahashi identity contribute ~20% to the magnitude of g_A. The calculation of the nucleon sigma-term elucidates the only unambiguous means of extrapolating meson-nucleon couplings off the meson mass-shell.Comment: 12 pages, REVTEX, 5 figures, epsfi

    Holonomic quantum gates: A semiconductor-based implementation

    Get PDF
    We propose an implementation of holonomic (geometrical) quantum gates by means of semiconductor nanostructures. Our quantum hardware consists of semiconductor macroatoms driven by sequences of ultrafast laser pulses ({\it all optical control}). Our logical bits are Coulomb-correlated electron-hole pairs (excitons) in a four-level scheme selectively addressed by laser pulses with different polarization. A universal set of single and two-qubit gates is generated by adiabatic change of the Rabi frequencies of the lasers and by exploiting the dipole coupling between excitons.Comment: 10 Pages LaTeX, 10 Figures include

    Survey of nucleon electromagnetic form factors

    Full text link
    A dressed-quark core contribution to nucleon electromagnetic form factors is calculated. It is defined by the solution of a Poincare' covariant Faddeev equation in which dressed-quarks provide the elementary degree of freedom and correlations between them are expressed via diquarks. The nucleon-photon vertex involves a single parameter; i.e., a diquark charge radius. It is argued to be commensurate with the pion's charge radius. A comprehensive analysis and explanation of the form factors is built upon this foundation. A particular feature of the study is a separation of form factor contributions into those from different diagram types and correlation sectors, and subsequently a flavour separation for each of these. Amongst the extensive body of results that one could highlight are: r_1^{n,u}>r_1^{n,d}, owing to the presence of axial-vector quark-quark correlations; and for both the neutron and proton the ratio of Sachs electric and magnetic form factors possesses a zero.Comment: 43 pages, 17 figures, 12 tables, 5 appendice

    Charge symmetry breaking via rho-omega mixing from model quark-gluon dynamics

    Full text link
    The quark-loop contribution to the ρ0−ω\rho^0-\omega mixing self-energy function is calculated using a phenomenologically successful QCD-based model field theory in which the ρ0\rho^0 and ω\omega mesons are composite qˉq\bar{q}q bound states. In this calculation the dressed quark propagator, obtained from a model Dyson-Schwinger equation, is confining. In contrast to previous studies, the meson-qˉq\bar{q}q vertex functions are characterised by a strength and range determined by the dynamics of the model; and the calculated off-mass-shell behaviour of the mixing amplitude includes the contribution from the calculated diagonal meson self-energies. The mixing amplitude is shown to be very sensitive to the small isovector component of dynamical chiral symmetry breaking. The spacelike quark-loop mixing-amplitude generates an insignificant charge symmetry breaking nuclear force.Comment: 11 Pages, 3 figures uuencoded and appended to this file, REVTEX 3.0. ANL-PHY-7718-TH-94, KSUCNR-004-94. [!! PostScript file format corrected. Retrieve by anonymous ftp from theory.phy.anl.gov (130.202.20.190), directory pub: mget wpfig*.ps Three files.
    • 

    corecore