1,685 research outputs found

    Enigma of ultraluminous X-ray sources may be resolved by 3D-spectroscopy (MPFS data)

    Full text link
    The ultraluminous X-ray sources (ULXs) were isolated in external galaxies for the last 5 years. Their X-ray luminosities exceed 100-10000 times those of brightest Milky Way black hole binaries and they are extremely variable. There are two models for the ULXs, the best black hole candidates. 1. They are supercritical accretion disks around a stellar mass black hole like that in SS433, observed close to the disk axes. 2. They are Intermediate Mass Black Holes (of 100-10000 solar masses). Critical observations which may throw light upon the ULXs nature come from observations of nebulae around the ULXs. We present results of 3D-spectroscopy of nebulae around several ULXs located in galaxies at 3-6 Mpc distances. We found that the nebulae to be powered by their central black holes. The nebulae are shocked and dynamically perturbed probably by jets. The nebulae are compared with SS433 nebula (W50).Comment: Proceedings of the ESO and Euro3D Workshop "Science Perspectives for 3D Spectroscopy", Garching (Germany), October 10-14, 2005. M. Kissler-Patig, M.M. Roth and J.R. Walsh (eds.

    Very large dielectric response of thin ferroelectric films with the dead layers

    Full text link
    We study the dielectric response of ferroelectric (FE) thin films with "dead" dielectric layer at the interface with electrodes. The domain structure inevitably forms in the FE film in presence of the dead layer. As a result, the effective dielectric constant of the capacitor ϵeff\epsilon_{eff} increases abruptly when the dead layer is thin and, consequently, the pattern of 180-degree domains becomes "soft". We compare the exact results for this problem with the description in terms of a popular "capacitor" model, which is shown to give qualitatively incorrect results. We relate the present results to fatigue observed in thin ferroelectric films.Comment: 5 pages, REVTeX 3.1 with one eps-figure. A note added that the linear response is not changed by electromechanical effect. To appear in Phys. Rev.

    A Statistical Mechanical Problem in Schwarzschild Spacetime

    Full text link
    We use Fermi coordinates to calculate the canonical partition function for an ideal gas in a circular geodesic orbit in Schwarzschild spacetime. To test the validity of the results we prove theorems for limiting cases. We recover the Newtonian gas law subject only to tidal forces in the Newtonian limit. Additionally we recover the special relativistic gas law as the radius of the orbit increases to infinity. We also discuss how the method can be extended to the non ideal gas case.Comment: Corrected an equation misprint, added four references, and brief comments on the system's center of mass and the thermodynamic limi

    High-resolution X-ray spectroscopy of tau Scorpii (B0.2V) with XMM-Newton

    Get PDF
    We report the analysis of the first high-resolution X-ray spectrum of the B0.2V star τ Scorpii obtained with the Reflection Grating Spectrometers (rg

    Influence of temperature gradients on tunnel junction thermometry below 1 K: cooling and electron-phonon coupling

    Full text link
    We have studied thermal gradients in thin Cu and AlMn wires, both experimentally and theoretically. In the experiments, the wires were Joule heated non-uniformly at sub-Kelvin temperatures, and the resulting temperature gradients were measured using normal metal-insulator-superconducting tunnel junctions. The data clearly shows that even in reasonably well conducting thin wires with a short (10μ\sim 10 \mum) non-heated portion, significant temperature differences can form. In most cases, the measurements agree well with a model which includes electron-phonon interaction and electronic thermal conductivity by the Wiedemann-Franz law.Comment: J. Low Temp. Phys. in pres

    Two-temperature relaxation and melting after absorption of femtosecond laser pulse

    Full text link
    The theory and experiments concerned with the electron-ion thermal relaxation and melting of overheated crystal lattice constitute the subject of this paper. The physical model includes two-temperature equation of state, many-body interatomic potential, the electron-ion energy exchange, electron thermal conductivity, and optical properties of solid, liquid, and two phase solid-liquid mixture. Two-temperature hydrodynamics and molecular dynamics codes are used. An experimental setup with pump-probe technique is used to follow evolution of an irradiated target with a short time step 100 fs between the probe femtosecond laser pulses. Accuracy of measurements of reflection coefficient and phase of reflected probe light are ~1% and \sim 1\un{nm}, respectively. It is found that, {\it firstly}, the electron-electron collisions make a minor contribution to a light absorbtion in solid Al at moderate intensities; {\it secondly}, the phase shift of a reflected probe results from heating of ion subsystem and kinetics of melting of Al crystal during 0 where tt is time delay between the pump and probe pulses measured from the maximum of the pump; {\it thirdly} the optical response of Au to a pump shows a marked contrast to that of Al on account of excitation of \textit{d}-electronsComment: 6th International Conference on Photo-Excited Processes and Applications 9-12 Sep 2008, Sapporo, Japan, http://www.icpepa6.com, the contributed paper will be published in Applied Surface Science(2009

    Triple oxygen isotopic composition of the high-<sup>3</sup>He/<sup>4</sup>He mantle

    Get PDF
    Measurements of Xe isotope ratios in ocean island basalts (OIB) suggest that Earth’s mantle accreted heterogeneously, and that compositional remnants of accretion are sampled by modern, high-3He/4He OIB associated with the Icelandic and Samoan plumes. If so, the high-3He/4He source may also have a distinct oxygen isotopic composition from the rest of the mantle. Here, we test if the major elements of the high-3He/4He source preserve any evidence of heterogeneous accretion using measurements of three oxygen isotopes on olivine from a variety of high-3He/4He OIB locations. To high precision, the Δ17O value of high-3He/4He olivines from Hawaii, Pitcairn, Baffin Island and Samoa, are indistinguishable from bulk mantle olivine (Δ17OBulk Mantle − Δ17OHigh 3He/4He olivine = −0.002 ± 0.004 (2 × SEM)‰). Thus, there is no resolvable oxygen isotope evidence for heterogeneous accretion in the high-3He/4He source. Modelling of mixing processes indicates that if an early-forming, oxygen-isotope distinct mantle did exist, either the anomaly was extremely small, or the anomaly was homogenised away by later mantle convection. The δ18O values of olivine with the highest 3He/4He ratios from a variety of OIB locations have a relatively uniform composition (∼5‰). This composition is intermediate to values associated with the depleted MORB mantle and the average mantle. Similarly, δ18O values of olivine from high-3He/4He OIB correlate with radiogenic isotope ratios of He, Sr, and Nd. Combined, this suggests that magmatic oxygen is sourced from the same mantle as other, more incompatible elements and that the intermediate δ18O value is a feature of the high-3He/4He mantle source. The processes responsible for the δ18O signature of high-3He/4He mantle are not certain, but δ18O–87Sr/86Sr correlations indicate that it may be connected to a predominance of a HIMU-like (high U/Pb) component or other moderate δ18O components recycled into the high-3He/4He source

    A small universe after all?

    Get PDF
    The cosmic microwave background radiation allows us to measure both the geometry and topology of the universe. It has been argued that the COBE-DMR data already rule out models that are multiply connected on scales smaller than the particle horizon. Here we show the opposite is true: compact (small) hyperbolic universes are favoured over their infinite counterparts. For a density parameter of Omega_o=0.3, the compact models are a better fit to COBE-DMR (relative likelihood ~20) and the large-scale structure data (sigma_8 increases by ~25%).Comment: 4 pages, RevTeX, 7 Figure

    Quantum driven Bounce of the future Universe

    Full text link
    It is demonstrated that due to back-reaction of quantum effects, expansion of the universe stops at its maximum and takes a turnaround. Later on, it contracts to a very small size in finite future time. This phenomenon is followed by a " bounce" with re-birth of an exponentially expanding non-singular universe
    corecore