265 research outputs found

    Major disruption of D″ beneath Alaska

    Get PDF
    D″ represents one of the most dramatic thermal and compositional layers within our planet. In particular, global tomographic models display relatively fast patches at the base of the mantle along the circum-Pacific which are generally attributed to slab debris. Such distinct patches interact with the bridgmanite (Br) to post-bridgmanite (PBr) phase boundary to generate particularly strong heterogeneity at their edges. Most seismic observations for the D″ come from the lower mantle S wave triplication (Scd). Here we exploit the USArray waveform data to examine one of these sharp transitions in structure beneath Alaska. From west to east beneath Alaska, we observed three different characteristics in D″: (1) the western region with a strong Scd, requiring a sharp δVs = 2.5% increase; (2) the middle region with no clear Scd phases, indicating a lack of D″ (or thin Br-PBr layer); and (3) the eastern region with strong Scd phase, requiring a gradient increase in δVs. To explain such strong lateral variation in the velocity structure, chemical variations must be involved. We suggest that the western region represents relatively normal mantle. In contrast, the eastern region is influenced by a relic slab that has subducted down to the lowermost mantle. In the middle region, we infer an upwelling structure that disrupts the Br-PBr phase boundary. Such an interpretation is based upon a distinct pattern of travel time delays, waveform distortions, and amplitude patterns that reveal a circular-shaped anomaly about 5° across which can be modeled synthetically as a plume-like structure rising about 400 km high with a shear velocity reduction of ~5%, similar to geodynamic modeling predictions of upwellings

    Evidence of an upper mantle seismic anomaly opposing the Cocos slab beneath the Isthmus of Tehuantepec, Mexico

    Get PDF
    Subduction of the Cocos plate beneath southern Mexico is characterized by several unusual features, such as a discontinuous volcanic arc, unusual arc chemistry, and anomalously low topography of Tehuantepec Isthmus. Recent seismic images from both receiver functions and seismic tomography suggest that there may be an additional, opposing structure dipping to the southwest from the Gulf of Mexico, and these images have been previously explained by a southwest-dipping slab. However, standard models of the Caribbean tectonic history do not support this interpretation. To better define the Cocos slab's structure and the possible existence of a structure dipping in the opposite direction, dense seismic data across southern Mexico are used to form high-resolution seismic images, based on the 2-D generalized radon transform method, and to relocate regional earthquakes. Our images show the Cocos plate dipping at 30° to the northeast encounters the anomaly that is dipping in the opposite sense at ∼150 km depth. Relocated seismicity clearly delineates a Wadati-Benioff zone that marks the subducting Cocos plate. A cluster of seismicity also appears at ∼150 km depth which may be related to the subduction of the Tehuantepec ridge and/or to the imaged seismic structure with opposite polarity

    Dyadic Synchrony and Responsiveness in the First Year: Associations with Autism Risk

    Get PDF
    In the first year of life, the ability to engage in sustained synchronous interactions develops as infants learn to match social partner behaviors and sequentially regulate their behaviors in response to others. Difficulties developing competence in these early social building blocks can impact later language skills, joint attention, and emotion regulation. For children at elevated risk for autism spectrum disorder (ASD), early dyadic synchrony and responsiveness difficulties may be indicative of emerging ASD and/or developmental concerns. As part of a prospective developmental monitoring study, infant siblings of children with ASD (high-risk group n = 104) or typical development (low-risk group n = 71), and their mothers completed a standardized play task when infants were 6, 9, and/or 12 months of age. These interactions were coded for the frequency and duration of infant and mother gaze, positive affect, and vocalizations, respectively. Using these codes, theory-driven composites were created to index dyadic synchrony and infant/maternal responsiveness. Multilevel models revealed significant risk group differences in dyadic synchrony and infant responsiveness by 12 months of age. In addition, high-risk infants with higher dyadic synchrony and infant responsiveness at 12 months received significantly higher receptive and expressive language scores at 36 months. The findings of the present study highlight that promoting dyadic synchrony and responsiveness may aid in advancing optimal development in children at elevated risk for autism. Lay Summary: In families raising children with an autism spectrum disorder (ASD), younger siblings are at elevated risks for social communication difficulties. The present study explored whether social-communication differences were evident during a parent–child play task at 6, 9, and 12 months of age. For infant siblings of children with ASD, social differences during play were observed by 12 months of age and may inform ongoing monitoring and intervention efforts

    Seismic imaging of the Cocos plate subduction zone system in central Mexico

    Get PDF
    Broadband data from the Meso-America Subduction Experiment (MASE) line in central Mexico were used to image the subducted Cocos plate and the overriding continental lithosphere beneath central Mexico using a generalized radon transform based migration. Our images provide insight into the process of subducting relatively young oceanic lithosphere and its complex geometry beneath continental North America. The converted and reverberated phase image shows complete horizontal tectonic underplating of the Cocos oceanic lithosphere beneath the North American continental lithosphere, with a clear image of a very thin low-velocity oceanic crust (7–8 km) which dips at 15–20 degrees at Acapulco then flattens approximately 300 km from the Middle America Trench. Farther inland the slab then appears to abruptly change from nearly horizontal to a steeply dipping geometry of approximately 75 degrees underneath the Trans-Mexican Volcanic Belt (TMVB). Where the slab bends underneath the TMVB, the migrated image depicts the transition from subducted oceanic Moho to continental Moho at ∼230 km from the coast, neither of which were clearly resolved in previous seismic images. The deeper seismic structure beneath the TMVB shows a prominent negative discontinuity (fast-to-slow) at ∼65–75 km within the upper mantle. This feature, which spans horizontally beneath the arc (∼100 km), may delineate the top of a layer of ponded partial melt

    Kinematics of slab tear faults during subduction segementation and implications for Italian magmatism

    Get PDF
    Tectonic activity in convergent plate boundaries commonly involves backward migration (rollback) of narrow subducting slabs and segmentation of subduction zones through slab tearing. Here we investigate this process in the Italian region by integrating seismic tomography data with spatiotemporal analysis of magmatic rocks and kinematic reconstructions. Seismic tomography results show gaps within the subducting lithosphere, which are interpreted as deep (100–500 km) subvertical tear faults. The development of such tear faults is consistent with proposed kinematic reconstructions, in which different rates of subduction rollback affected different parts of the subduction zone. We further suggest a possible link between the development of tear faults and the occurrence of regional magmatic activity with transitional geochemical signatures between arc type and OIB type, associated with slab tearing and slab breakoff. We conclude that lithospheric-scale tear faults play a fundamental role in the destruction of subduction zones. As such, they should be incorporated into reconstructions of ancient convergent margins, where tear faults are possibly represented by continental lineaments linked with magmatism and mineralization

    High frequency seismic waves and slab structures beneath Italy

    Get PDF
    Tomographic images indicate a complicated subducted slab structure beneath the central Mediterranean where gaps in fast velocity anomalies in the upper mantle are interpreted as slab tears. The detailed shape and location of these tears are important for kinematic reconstructions and understanding the evolution of the subduction system. However, tomographic images, which are produced by smoothed, damped inversions, will underestimate the sharpness of the structures. Here, we use the records from the Italian National Seismic Network (IV) to study the detailed slab structure. The waveform records for stations in Calabria show large amplitude, high frequency (f>5 Hz) late arrivals with long coda after a relatively low-frequency onset for both P and S waves. In contrast, the stations in the southern and central Apennines lack such high frequency arrivals, which correlate spatially with the central Apennines slab window inferred from tomography and receiver function studies. Thus, studying the high frequency arrivals provides an effective way to investigate the structure of slab and detect possible slab tears. The observed high frequency arrivals in the southern Italy are the strongest for events from 300 km depth and greater whose hypocenters are located within the slab inferred from fast P-wave velocity perturbations. This characteristic behavior agrees with previous studies from other tectonic regions, suggesting the high frequency energy is generated by small scale heterogeneities within the slab which act as scatterers. Furthermore, using a 2-D finite difference (FD) code, we calculate synthetic seismograms to search for the scale, shape and velocity perturbations of the heterogeneities that may explain features observed in the data. Our preferred model of the slab heterogeneities beneath the Tyrrhenian Sea has laminar structure parallel to the slab dip and can be described by a von Kármán function with a down-dip correlation length of 10 km and 0.5 km in thickness with ∼2.5% V_p fluctuations within the slab. This suggests that the heterogeneities are inherited from the melt shear bands formed during the original formation of the oceanic lithosphere near the mid-ocean ridge

    Pathologist Concordance for Ovarian Carcinoma Subtype Classification and Identification of Relevant Histologic Features Using Microscope and Whole Slide Imaging.

    Get PDF
    CONTEXT.—: Despite several studies focusing on the validation of whole slide imaging (WSI) across organ systems or subspecialties, the use of WSI for specific primary diagnosis tasks has been underexamined. OBJECTIVE.—: To assess pathologist performance for the histologic subtyping of individual sections of ovarian carcinomas using a light microscope and WSI. DESIGN.—: A panel of 3 experienced gynecologic pathologists provided reference subtype diagnoses for 212 histologic sections from 109 ovarian carcinomas based on optical microscopy review. Two additional attending pathologists provided diagnoses and also identified the presence of a set of 8 histologic features important for ovarian tumor subtyping. Two experienced gynecologic pathologists and 2 fellows reviewed the corresponding WSI images for subtype classification and feature identification. RESULTS.—: Across pathologists specialized in gynecologic pathology, concordance with the reference diagnosis for the 5 major ovarian carcinoma subtypes was significantly higher for a pathologist reading on a microscope than each of 2 pathologists reading on WSI. Differences were primarily due to more frequent classification of mucinous carcinomas as endometrioid with WSI. Pathologists had generally low agreement in identifying histologic features important to ovarian tumor subtype classification with either an optical microscopy or WSI. This result suggests the need for refined histologic criteria for identifying such features. Interobserver agreement was particularly low for identifying intracytoplasmic mucin with WSI. Inconsistencies in evaluating nuclear atypia and mitoses with WSI were also observed. CONCLUSIONS.—: Further research is needed to specify the reasons for these diagnostic challenges and to inform users and manufacturers of WSI technology

    Precise measurements help gauge Pacific Northwest\u27s Earthquake potential

    Get PDF
    Except for the recent rumblings of a few moderate earthquakes and the eruption of Mt. St. Helen\u27s, all has been relatively quiet on the Pacific Northwestern front. The Cascades region in the Pacific Northwest, a sporadically active earthquake and volcanic zone, still has great seismic potential [Atwater, 1987], as comparisons with other subduction zones around the world have shown [Heaton and Kanamori, 1984]. Recent tsunami propagation models [Satake, 1996] and tree ring studies suggest that the last great Cascadia earthquake occurred in the winter of 1700 A.D. and had a magnitude of −8.9. The North Cascades or Wenatchee earthquake followed in 1872. With an estimated magnitude greater than 7, it was the largest earthquake in the written history of Washington and Oregon

    Isolation of SARS-CoV-2 in viral cell culture in immunocompromised patients with persistently positive RT-PCR results

    Get PDF
    Immunocompromised adults can have prolonged acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positive RT-PCR results, long after the initial diagnosis of coronavirus disease 2019 (COVID-19). This study aimed to determine if SARS-CoV-2 virus can be recovered in viral cell culture from immunocompromised adults with persistently positive SARS-CoV-2 RT-PCR tests. We obtained 20 remnant SARS-CoV-2 PCR positive nasopharyngeal swabs from 20 immunocompromised adults with a positive RT-PCR test ≥14 days after the initial positive test. The patients\u27
    • …
    corecore