4,931 research outputs found

    Distance measures in gravitational-wave astrophysics and cosmology

    Full text link
    We present quantities which characterize the sensitivity of gravitational-wave observatories to sources at cosmological distances. In particular, we introduce and generalize the horizon, range, response, and reach distances. These quantities incorporate a number of important effects, including cosmologically well-defined distances and volumes, cosmological redshift, cosmological time dilation, and rate density evolution. In addition, these quantities incorporate unique aspects of gravitational wave detectors, such as the variable sky sensitivity of the detectors and the scaling of the sensitivity with inverse distance. An online calculator (https://users.rcc.uchicago.edu/~dholz/gwc/) and python notebook (https://github.com/hsinyuc/distancetool) to determine GW distances are available. We provide answers to the question: "How far can gravitational-wave detectors hear?

    Measurement of Subcellular Force Generation in Neurons

    Get PDF
    AbstractForces are important for neuronal outgrowth during the initial wiring of the nervous system and after trauma, yet subcellular force generation over the microtubule-rich region at the rear of the growth cone and along the axon has never, to our knowledge, been directly measured. Because previous studies have indicated microtubule polymerization and the microtubule-associated proteins Kinesin-1 and dynein all generate forces that push microtubules forward, a major question is whether the net forces in these regions are contractile or expansive. A challenge in addressing this is that measuring local subcellular force generation is difficult. Here we develop an analytical mathematical model that describes the relationship between unequal subcellular forces arranged in series within the neuron and the net overall tension measured externally. Using force-calibrated towing needles to measure and apply forces, in combination with docked mitochondria to monitor subcellular strain, we then directly measure force generation over the rear of the growth cone and along the axon of chick sensory neurons. We find the rear of the growth cone generates 2.0 nN of contractile force, the axon generates 0.6 nN of contractile force, and that the net overall tension generated by the neuron is 1.3 nN. This work suggests that the forward bulk flow of the cytoskeletal framework that occurs during axonal elongation and growth-cone pauses arises because strong contractile forces in the rear of the growth cone pull material forward

    Comparing Offline Decoding Performance in Physiologically Defined Neuronal Classes

    Get PDF
    Objective: Recently, several studies have documented the presence of a bimodal distribution of spike waveform widths in primary motor cortex. Although narrow and wide spiking neurons, corresponding to the two modes of the distribution, exhibit different response properties, it remains unknown if these differences give rise to differential decoding performance between these two classes of cells. Approach: We used a Gaussian mixture model to classify neurons into narrow and wide physiological classes. Using similar-size, random samples of neurons from these two physiological classes, we trained offline decoding models to predict a variety of movement features. We compared offline decoding performance between these two physiologically defined populations of cells. Main results: We found that narrow spiking neural ensembles decode motor parameters better than wide spiking neural ensembles including kinematics, kinetics, and muscle activity. Significance: These findings suggest that the utility of neural ensembles in brain machine interfaces may be predicted from their spike waveform widths

    The Effects of Surfaces on the Aerodynamics and Acoustics of Jet Flows

    Get PDF
    Aircraft noise mitigation is an ongoing challenge for the aeronautics research community. In response to this challenge, low-noise aircraft concepts have been developed that exhibit situations where the jet exhaust interacts with an airframe surface. Jet flows interacting with nearby surfaces manifest a complex behavior in which acoustic and aerodynamic characteristics are altered. In this paper, the variation of the aerodynamics, acoustic source, and far-field acoustic intensity are examined as a large at plate is positioned relative to the nozzle exit. Steady Reynolds-Averaged Navier-Stokes solutions are examined to study the aerodynamic changes in the field-variables and turbulence statistics. The mixing noise model of Tam and Auriault is used to predict the noise produced by the jet. To validate both the aerodynamic and the noise prediction models, results are compared with Particle Image Velocimetry (PIV) and free-field acoustic data respectively. The variation of the aerodynamic quantities and noise source are examined by comparing predictions from various jet and at plate configurations with an isolated jet. To quantify the propulsion airframe aeroacoustic installation effects on the aerodynamic noise source, a non-dimensional number is formed that contains the flow-conditions and airframe installation parameters

    Disease monitoring and biosecurity

    Get PDF
    Understanding and detecting diseases of amphibians has become vitally important in conservation and ecological studies in the twenty-fi rst century. Disease is defi ned as the deviance from normal conditions in an organism. The etiologies (causes) of disease include infectious, toxic, traumatic, metabolic, and neoplastic agents. Thus, monitoring disease in nature can be complex. For amphibians, infectious, parasitic, and toxic etiologies have gained the most notoriety. Amphibian diseases have been linked to declining amphibian populations, are a constant threat to endangered species, and are frequently a hazard in captive breeding programs, translocations, and repatriations. For example, a group of viruses belonging to the genus Ranavirus and the fungus Batrachochytrium dendrobatidis are amphibian pathogens that are globally distributed and responsible for catastrophic population die-offs, with B. dendrobatidis causing known species extinctions (Daszak et al. 1999; Lips et al. 2006; Skerratt et al. 2007). Some infectious diseases of amphibians share similar pathological changes; thus, their detection, recognition, and correct diagnosis can be a challenge even by trained veterinary pathologists or experienced herpetologists. This chapter will introduce readers to the most common amphibian diseases with an emphasis on those that are potentially or frequently lethal, and the techniques involved in disease monitoring. It will also outline methods of biosecurity to reduce the transmission of disease agents by humans. We start by covering infectious, parasitic, and toxic diseases. Next, surveillance methods are discussed, including methods for sample collection and techniques used in disease diagnosis. Finally, biosecurity issues for preventing disease transmission will be covered, and we provide protocols for disinfecting fi eld equipment and footwear

    Development of Composite Sandwich Bonded Longitudinal Joints for Space Launch Vehicle Structures

    Get PDF
    The NASA Composite Technology for Exploration (CTE) Project is developing and demonstrating critical composite technologies with a focus on composite bonded joints; incorporating materials, design/analysis, manufacturing, and tests that utilize NASAs expertise and capabilities. The project has goals of advancing composite technologies and providing lightweight structures to support future NASA exploration missions. In particular, the CTE project will demonstrate weight-saving, performance-enhancing composite bonded joint technology for Space Launch System (SLS)-scale composite hardware. Advancements from the CTE project may be incorporated as future block upgrades for SLS structural components. This paper discusses the details of the development of a composite sandwich bonded longitudinal joint for a generic space launch vehicle structure called the CTE Point Design. The paper includes details of the design, analysis, materials, manufacturing, and testing of sub-element joint test articles to test the capability of the joint design. The test results show that the composite longitudinal bonded joint design significantly exceeds the design loads with a 2.0 factor of safety. Analysis pre-test failure predictions for all sub-element bonded joint test coupons were all within 10% of the average test coupon failure load. This testing and analysis provides confidence in the potential use of composite bonded joints for future launch vehicle structures
    corecore