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Abstract
Objective: Recently, several studies have documented the presence of a bimodal distribution of
spike waveform widths in primary motor cortex. Although narrow and wide spiking neurons,
corresponding to the two modes of the distribution, exhibit different response properties, it
remains unknown if these differences give rise to differential decoding performance between
these two classes of cells. Approach: We used a Gaussian mixture model to classify neurons into
narrow and wide physiological classes. Using similar-size, random samples of neurons from
these two physiological classes, we trained offline decoding models to predict a variety of
movement features. We compared offline decoding performance between these two
physiologically defined populations of cells. Main results: We found that narrow spiking neural
ensembles decode motor parameters better than wide spiking neural ensembles including
kinematics, kinetics, and muscle activity. Significance: These findings suggest that the utility of
neural ensembles in brain machine interfaces may be predicted from their spike waveform
widths.

Keywords: motor cortex, spike width, offline decoding

(Some figures may appear in colour only in the online journal)

Introduction

Neural interface systems for control have recently made a
number of important advances in recording capabilities,
decoding algorithms, and output devices [1, 2]. In particular,
these systems have seen nearly a doubling of simultaneously
recorded neurons every seven years using either high density
electrode arrays, or more recently, optical calcium fluores-
cence imaging [3]. These advances have provided an ever
growing set of rich, high-dimensional signals for control [4].
And yet, decoding ability has not increased correspondingly

with the growth of input signals, but rather has plateaued.
This disparity arises, in part, because high-dimensional input
signals require larger models to relate neural activity to motor
features. These models are harder to train for a given size of
data, are more prone to overfitting, and thereby less gen-
eralizable [5–7]. As such, there is some debate about the
optimal size of decoding models [8].

One approach to reduce the dimensionality of neural
feature space is to take advantage of the fact that the state
space of neural activity patterns is much smaller than the full
dimensionality of the neural features being analyzed [9–11].
That is, the responses of individual neurons are correlated,
and the number of latent dimensions needed to explain the
variability in the ensemble activity is less than the total
number of recorded neurons. Indeed, recent reports have
shown that the activity of moderately large neural ensembles
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(tens to hundreds of cells) can be described by a few ortho-
gonal latent dimensions in neural state space [10]. Within this
framework, these latent dimensions may be used as control
axes for a prosthetic device [11, 12].

Another approach to constrain the dimensionality of
neural feature space is to perform model selection using some
statistical selection criterion [7]. The guiding principle of this
approach is to identify relevant (i.e. predictive) neural features
by fitting a model on training data. Several different criteria
have been proposed to rank feature relevancy including cor-
relation coefficient [13, 14], mutual information [15], and
decoding accuracy [16, 17], while additional criteria, such as
Akaike information criterion (AIC) [18], Bayesian informa-
tion criterion [6, 19], and automatic relevance determination
[5, 20] are used to determine the optimal number of features
to include in a model.

Instead of approaching model selection as a dimension-
ality reduction or statistical problem, we wondered if phy-
siological properties of motor cortical neurons could guide the
choice of which neurons to use in a decoder. One physiolo-
gical property that has received much attention recently is
spike waveform width. In particular, primary motor cortex
(MI) exhibits a bimodal distribution of extracellular, spike
waveform widths [21–23]. Although extracellular recordings
cannot directly determine cell type or morphology, these two
modes exhibit different physiological and functional proper-
ties [24]. That study observed that population responses
among narrow spiking neurons exhibited more pronounced
oscillatory power in the beta frequency band (15–35 Hz) as
was observed in the local field potential. Moreover, during
peri-movement epochs, narrow, unlike wide spiking neurons,
spatially coordinate their firing activity in a way that is con-
sistent with both the wave propagation observed in the local
field potential oscillations and the underlying anatomical
horizontal connectivity [24, 25]. We reasoned that the narrow
spiking neural population may be more closely related to
movement because narrow spiking neurons form a network of
functional connections that is aligned with the spatial pattern
associated with movement onset. Thus, we hypothesized that
narrow spiking neurons would lead to more accurate move-
ment decoding as compared to wide spiking neurons.

Material and methods

Neurophysiology

All surgical and experimental procedures were approved by
either the University of Chicago, or Northwestern University
Animal Care and Use Committees, and conformed to the
principles outlined in the Guide for the Care and Use of
Laboratory Animals (NIH publication no 86−23, revised
1985). Five rhesus macaques (macaca mulatta) were
implanted with 96 channel Utah electrode arrays in the upper
limb area of MI contralateral to their working arm (for details
about the exact placement of the electrode arrays, see
[26, 27]). Neural signals were collected from these arrays
using a Cerebus neural data acquisition system (Blackrock

Microsystems, Salt Lake City, UT). Unit spiking activity was
sorted offline using semi-manual spike sorting software
(Offline Sorter, Plexon Inc., Dallas, TX).

Behavioral tasks

This experiment consisted of three different tasks involving
movement of the upper limb. In the first task, two rhesus
macaques were trained to play an instructed-delay, center-out
reaching task (for a description of the task see [27]). Briefly,
animals were trained to control the position of a cursor using a
two-link robotic exoskeleton (BKIN Technologies, Kingston,
Ontario, CA). The position of the cursor was projected
directly above the position of the animal’s hand. A trial began
when the animal moved the cursor to a center target and
maintained it there for 500 ms. After that time, the animal was
cued to move to one of eight possible peripheral targets
positioned radially around the center target, then had to wait
1000 ms until a go cue appeared. At this point, the animal was
free to move from the center target to the peripheral one.
Upon hitting the peripheral target, the animal had to hold the
cursor at the peripheral target for 500 ms to complete the trial
successfully. Fluid reinforcement was delivered on each
successful trial.

Two additional rhesus macaques were trained to play a
random target pursuit (RTP) task in multiple experimental
conditions (for a detailed description of the task and exper-
imental design see [26]). Briefly, animals used the same
robotic exoskeleton to make planar reaching movements to
square targets randomly distributed within a 10×6 cm
workspace. Every time the cursor hit the target, a new target
appeared at a random location. In order to complete a trial
successfully, an animal had to sequentially hit seven targets.
Failure to hit a target within 5 s of its appearance resulted in
an aborted trial. Fluid reinforcement was delivered for every
successful trial.

One rhesus macaque was trained to perform an isometric
wrist flexion task. The upper arm was constrained largely to a
para-sagittal plane with the elbow at a 90° angle and the
forearm horizontal, in an orientation midway between supi-
nated and pronated. The monkey’s wrist was maintained in
line with its forearm by securing its hand in a box, which was
custom-fit with padding to minimize movement. A six-degree
of freedom torque cell was mounted on the box, such that the
axes of measurement aligned with those of the wrist. Cursor
movement was proportional to the force along the flexion-
extension and radial-ulnar deviation axes. The task required
the monkey to move the cursor from a central target to one of
eight peripheral targets separated by 45°. The force targets
were set for each monkey to be submaximal (approximately
20%–30% MVC) in order to reduce fatigue. To initiate a trial,
the monkey held the cursor in the central target (requiring no
force) for 0.5 s, after which a randomly selected outer target
appeared. The monkey was required to move the cursor to the
outer target within 5 s, and to maintain that force for 0.5 s in
order to receive fluid reinforcement.
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Classification of narrow and wide spiking neurons

We classified units into two discrete physiological classes
based on their spike waveform width. To determine the width
of each sorted unit, we measured the difference in time
between the peak and trough of the average waveform. An
additional quantity, waveform signal-to-noise ratio (SNR),
was defined as the magnitude of the peak minus the trough in
the average waveform divided by the average standard
deviation of the waveform across time [26]. Only units with
SNRs greater than 3 were used in the subsequent analyses.

For each dataset, a Gaussian mixture model [28] was
used to classify spike waveforms into narrow and wide
categories. Mathematically, the Gaussian mixture model
attempts to describe the distribution of spike waveform
widths as a sum of K Gaussian distributions. Each Gaussian
in the mixture model is referred to as a component (indexed
with the variable, k), and is fit with a unique mean and
standard deviation, μk, and ,ks respectively. Each component
also has an additional parameter, πk, representing the pro-
portion of data described by that component. Expressed as an
equation, this model may be specified as

p w N w , ,
k

K

k k k
1

( )( ) åp m s=
=

where p(w) is the probability of observing a spike waveform
width, w, and N w ,k k( )m s indicates a Gaussian distribution
with mean, μk, and standard deviation, .ks This model
included an additional regularization parameter, λ, that was
added to each ks to ensure that ks remained strictly positive
for every component (see [28] for a more complete treatment
on fitting Gaussian mixture models. Matlab function
fitgmdist, The Mathworks, Natick, MA).

To confirm that the spike waveform width distributions
were bimodal, we varied the number of components, K, in the
mixture model, and computed the AIC, a goodness of fit
statistic for each model [29]. As we increased K, we also
increased λ proportionately to ensure that each additional
component was non-degenerate. A chi-square test of homo-
geneity was used to compare the proportion of narrow and
wide neurons across recording sessions in a given ani-
mal [30].

Computing other response properties of cells

In addition to determining the waveform width of each cell,
we also measured its average firing rate, and, for center-out
datasets, the preferred direction and tuning strength. Average
firing rate was determined by dividing the spike counts of
each cell by the duration of the recording. Firing rate variance
was computed using the following formula:

n
y yvar:

1

1
,

b

n

b
1
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where n is the number of 50 ms bins, yb is the spike count in
bin b, and ȳ is the average spike count over all bins. To
determine preferred direction and tuning strength, we fit a
cosine-tuning model of the form:

y xcos ,i i( ) a b f= + - +

where yi indicates the number of spikes between the go cue
and target hit on trial i, a is the overall firing rate of the cell, β
is the gain of the cosine tuning model, xi is the angular
location of the peripheral target on trial i, f is the preferred
direction of the cell, and  is a normally distributed error term.
This model was fit using the Matlab function lsqcurvefit. The
tuning strength of the cell was defined as the proportion of
variance in spike counts explained by this tuning model.

Decoding analysis

Input features. Spiking activity from every neuron was binned
into 50ms bins. Only neurons with firing rates >1 Hz and
waveform SNR>3 were used in subsequent analyses. The
number of neurons that satisfied these criteria is listed in table 1.
In general, the spike counts of each neuron in the preceding 20
time bins (i.e. 20 filter taps, 1 s of history) were used as input
features to the decoding model, however, we varied the number
of taps between 4 and 32 in one analysis to explore the effect of
the number of taps on decoding performance (figure 4). In total,
the input dimensionality to the decoding model was equal to the
number of neurons multiplied by the number of taps (which
was 20, unless otherwise noted).

Output features. Several different motor related quantities
were decoded including kinematic and kinetic features as well
as muscle activity. Output features were decoded in 50ms bins.

Table 1. Summary of datasets Details regarding task, All times are listed in microseconds.

Dataset Task
# data
points

# training
points

# test
points # narrow # neurons μ1 1s μ2 2s π l

rs050225 center-out 4233 3175 1058 71 105 224 53 434 37 0.68 0
rs051013 center-out 4423 3317 1106 42 57 235 67 438 54 0.73 0
rj040114 center-out 2374 1781 593 98 163 200 38 344 62 0.62 0
rj040207 center-out 5095 3821 1274 88 130 201 38 367 57 0.65 0
b080725 RTP 4631 3473 1158 62 87 221 62 383 78 0.70 1
mk080828 RTP 6225 4668 1557 38 51 223 38 416 52 0.74 0
j141203 wrist 23 982 17 987 5995 58 75 253 76 401 109 0.67 1

Note: dataset size, number of neurons, and fit parameters for the Gaussian mixture model.
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In center-out datasets, we decoded shoulder and elbow (joint)
torque (computed as described in [31]), joint angular velocities,
Cartesian x and y velocities of the cursor, and wrist speed. In
the isometric wrist dataset, j141203, we decoded the activity of
11 muscles of the forearm and hand including extensor
digitorum communis (EDC), adductor pollicis longus (APL),
flexor digitorum profundis (FDP), extensor carpi radialis
(ECR), EDC 2 (EDC2), brachioradialis (Brad), pronator teres
(PT), flexor carpi ulnaris (FCU), flexor digitorum superficialis
(FDS), flexor carpi radialis (FCR), and FDS 2 (FDS2).

Decoding model. All computations were carried out offline
in the Matlab programming environment. We employed a
standard causal Wiener filter model to decode movement
related quantities from neural activity [8, 19, 32–34].
Mathematically, this model satisfies the following objective:

y xargmin ,
t

T

t
u

t u u
1 0

19

2
2å åa b- -

b = =
-

where yt is a motor quantity at time bin t, xt−u is a vector of
spike counts corresponding to time bin t—u, a is an intercept
term, ub is a vector containing the coefficient of each filter tap
at time lag, u, and 2⋅ denotes the ℓ2 norm. This model is
arguably one of the simplest neural decoding models, yet it
has been widely used and has been shown to achieve a high
degree of decoding accuracy [8, 19, 32]. Model goodness of
fit was quantified using the coefficient of determination, R2

given by the following formula:

R
y y

y y
: 1 ,t t t

t t

2
2

2

( )ˆ
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= -

å -

å -

where yt, y ,t̂ and ȳ denote the observed motor quantity, the
fitted motor quantity, and the time averaged motor quantity,
respectively.

Models were trained on 75% of available data and tested
on the remaining 25%. We found that the proportion of data
allocated to training and test sets did not have an appreciable
effect on subsequent analyses.

Bootstrap analysis. In order to compare decoding
performance between narrow and wide spiking neural
populations, we drew random ensembles of N neurons from
each population repeatedly (100 times, with replacement),
trained linear decoding models, and measured the decoding
performance on a separate set of test data. This process was
applied to each dataset individually. The number of neurons
in the ensemble, N, was varied systematically to quantify how
decoding performance scaled in each population.

Matching procedure. In order to control for underlying
differences in response properties between narrow and wide
spiking neural populations, we developed a greedy matching
algorithm to select neurons with similar response properties.
We chose an ensemble of N wide spiking neurons completely
at random. Then, for each selected wide spiking neuron, we
found the narrow spiking neuron whose response property
(e.g. firing rate) was closest to the wide spiking neuron, where

closeness was defined by a distance metric (described below
for each feature). If the narrow spiking neuron that was
closest to the current wide spiking cell was already matched
to another wide spiking cell, the next closest unmatched
narrow spiking neuron was matched to that wide spiking
neuron. We matched several underlying response properties
including firing rate, waveform SNR, preferred direction, and
tuning strength. For firing rate, waveform SNR, and tuning
strength, we used the absolute value of the difference as our
distance metric (i.e. the Euclidean distance). For a circular
variable like preferred direction, we used the absolute value of
the angle between preferred directions as our distance metric.

Results

We recorded spiking activity from single units in primary MI
while monkeys engaged in a variety of tasks involving the
upper limb. We computed the spike width of each sorted unit
(figure 1) and classified it as either narrow or wide. We then
compared offline decoding performance of these two classes
of cells across many different tasks. A preliminary version of
these results was presented as a conference proceeding [35].

Narrow and wide spiking neural ensembles

We used a Gaussian mixture model to classify neurons as
either narrow or wide spiking based on their spike waveform
widths (figure 2). A separate model was trained on each

Figure 1. Quantifying spike waveform width. For each sorted unit,
we computed its spike waveform width. Here, waveform width is
defined as the difference in time between the peak and trough of the
average waveform. Exemplary narrow (blue) and wide (red)
waveforms (averaged over spikes) are shown as well as the time
from trough to peak (top). The distribution of all recorded
waveforms from dataset rs050225 (bottom). Color indicates either
narrow or wide waveform width.
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recorded dataset (summary statistics of each model given in
table 1). To verify that each distribution was indeed bimodal,
we fit additional Gaussian mixture models with varied num-
bers of Gaussian components. For all datasets, we found that
a two-component model (i.e. a bimodal distribution) had
optimal AIC values. The mean spatial locations of narrow and
wide spiking neurons across the cortical sheet were not sig-
nificantly different (Bonferroni corrected Hotelling’s T2 test)
suggesting that subsequent decoding results are not due to
differences in the location of the neurons on the cortical sheet.

We examined the consistency of the bimodal distribution
across time. In monkeys Rs and Rj, we analyzed datasets that
were collected 230 and 24 d apart, respectively. We per-
formed a Chi-square test of homogeneity to assess whether
the proportion of narrow spiking units was the same across
datasets. We found no evidence of a significant difference in
the proportion of narrow spiking units (p<0.42 and
p<0.18 for animals Rs and Rj, respectively) across time.

The previous statistical test ensured that the relative
proportion of narrow and wide spiking units was the same
across time; however, we did not directly gauge whether the
average waveform width of each population was similar
across time. Accordingly, we performed a t-test on the aver-
age waveform width of each class across time. In both ani-
mals, we found no evidence to suggest that the average
waveform width of the narrow spiking class was significantly
different across time (Rs: t49=−0.82, p<0.21, Rj:
t182=−0.18, p<0.43). With respect to wide spiking neu-
rons, animal Rs showed no significant difference across time
(t20=−0.26, p<0.40), although there was a significant
difference in Rj (t93=−1.97, p<0.026).

Decoding kinetics and kinematics

We built simple linear decoding models to predict a variety of
kinematic and kinetic motor features based on the activity of
either narrow or wide spiking neural ensembles. For our
initial analysis, we considered neural data that were collected
while animals were performing an instructed-delay, center-out
reaching task. We found that narrow spiking neural ensem-
bles outperformed wide spiking neural ensembles at a variety
of different ensemble sizes (figure 3, see methods for details
about model training and validation). We performed a two-
way ANOVA using waveform class (i.e. narrow or wide) and
ensemble size as factors. We observed a highly significant
main effect of waveform class on decoding performance for
each motor feature (median improvement in R2 was 0.15
across datasets/motor features; p<1e-8 for every dataset/
motor feature combination, Bonferroni adjusted for multiple
comparisons).

One potential explanation for the difference in decoding
performance across waveform classes is that the optimal
number of taps for each waveform class could differ. To test
this possibility, we fixed the number of neurons in the
decoder and systematically varied the number of filter taps
from four (200 ms of history) up to 32 (1600 ms of history).
Again we observed that narrow spiking neurons outperformed
wide spiking neurons irrespective of the number of taps in the
model (figure 4(A), ANOVA, F1,784=139.81, p<1e-8,
F1,784=407.77, p<1e-8, for x and y velocity, respectively),
or model regularization (figure 4(B), ANOVA, F1,784=
628.90, p<1e-8, F1,784=270.81, p<1e-8, for x and y
velocity, respectively). Although decoding performance var-
ied with the number of taps in the model, the relative
improvement from using narrow spiking ensembles was fairly
constant across the range of taps with the narrow spiking
populations always outperforming wide spiking populations
(figure 4(C)).

Figure 2. Bimodal distribution of spike waveform widths. A
Gaussian mixture model was used to partition neurons from each
dataset into narrow and wide spiking categories based on waveform
width. To verify that each waveform distribution was indeed
bimodal, we systematically varied the number of Gaussians in the
mixture model and computed the AIC to perform model selection.
For each dataset, we found that a mixture model containing two
components best described the data.
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Given that the number of taps in the decoder could not
explain the difference in decoding ability, we next sought to
control for several underlying response properties of these
two populations. In general, narrow spiking neurons had
higher firing rates, higher firing rate variance, and higher
waveform SNRs (figures 5(A)–(C)), although in one dataset,
mk080828, wide spiking neurons had higher firing rates and
firing rate variance. For two datasets, b080725 and j141203,
narrow spiking neuron rates were significantly higher (KS
test, p<0.0002 and p<0.003, respectively, Bonferroni
adjusted for multiple comparisons), and, narrow spiking
neuron rate variability was significantly higher (KS test,

p<0.00 002, and p<0.00 006, respectively). Narrow
spiking neuron waveform SNRs were significantly greater
than wide spiking SNRs in two datasets, rs050225, and
rs051013 (KS test, p<0.0002 for both datasets). Addition-
ally, narrow spiking neurons showed stronger directional
selectivity as revealed by their higher tuning strengths
(figure 5(D)). This trend was significant in both datasets from
animal Rj (KS test, p<0.007 for both datasets). However,
there was no significant difference in the distribution of
preferred directions across waveform class in any dataset
(circular medians test [36], p>0.05 for all datasets,
figure 5(E)).

Figure 3. Decoding performance using narrow and wide spiking neural ensembles. We used a standard 20-tap causal Wiener filter to decode
kinematic and kinetic quantities from neural data while two animals performed an instructed-delay, center-out task. We repeatedly (100
times) drew random samples of either narrow or wide spiking neurons, trained a decoding model, and then tested its performance on a
separate set of data. We found that narrow spiking neural ensembles significantly outperformed wide spiking neural ensembles in a variety of
coordinate frames (see text for summary statistics). Each column indicates a different dataset. Individual points correspond to each of the 100
random samples, while the solid lines indicate the upper 75th percentile of decoding performance.
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Figure 4. The number of taps does not explain the difference in decoding performance. (A) We fit a linear decoding model containing 20
narrow or wide spiking neurons and systematically varied the number of filter taps. We observed that narrow spiking neurons could predict x
and y velocities (left and right columns, respectively) better than wide spiking populations irrespective of the number of taps. Data shown are
from one dataset, rj040114. Solid line indicates average performance across iterations of the bootstrap. Shaded area indicates±2 standard
errors of the mean. Note that overfitting occurs when using many taps. (B) To ensure that any performance gains were not due to overfitting,
we repeated the previous analysis using ridge regression [26]. We observed that decoding performance no longer declined with many taps
suggesting that overfitting had been ameliorated by regularization, and that narrow spiking neurons still outperformed wide spiking neurons.
(C) We measured the performance gain, defined as the difference in R2 values between narrow and wide for all datasets and found that the
number of filter taps did not explain the disparity in decoding performance. Note that x velocity performance gains were slightly larger in the
unregularized data from rj040114 suggesting that at least some of the improvement in performance at large numbers of taps may have been
due to wide spiking neurons being more overfit than narrow spiking neurons. Nevertheless, in every case, narrow spiking neurons still
significantly outperformed wide spiking neurons.
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We developed a matching procedure to control for any
putative differences between narrow and wide spiking neu-
rons (see Methods for details). Random samples of wide
spiking neurons were matched with narrow spiking units that
exhibited the same firing rate, waveform SNR, preferred
direction, or tuning strength each independently. This
matching procedure yielded samples of narrow and wide
spiking neurons that had statistically indistinguishable
averages. Even after controlling for one underlying response
property, narrow spiking units still almost always out-
performed wide spiking units across a variety of motor fea-
tures (figure 6 for wrist speed and figure 7 for x and y,
velocities).

Decoding muscle activity

To further link narrow spiking neural activity with motor output,
we examined data from an isometric center-out wrist task. Here,
we attempted to predict the activity of 11 different upper limb
muscles based on narrow and wide spiking neural ensembles
(figure 8). We found that each muscle’s activity was also better
predicted by narrow spiking ensembles (median improvement in
R2 was 0.06 across all motor features; ANOVA, EDC
F1,692=525; APL F1,692=416; FDP F1,692=213; ECR
F1,692=810; EDC2 F1,692=453; Brad F1,692=354; PT
F1,692=488; FCU F1,692=219; FDS F1,692=335; FCR
F1,692=90; FDS2 F1,692=625; p<1e-8 for all muscles).

Figure 5. Response properties of narrow and wide spiking neural ensembles. The firing rate, firing variance, and waveform SNR for every
neuron from each dataset was estimated (see Methods for details) and then compared based on waveform width category. Generally, narrow
spiking units had significantly higher firing rates and waveform SNRs (all datasets except mk080828). Blue and red bars indicate median
values for each dataset. For the center-out datasets, we estimated each neuron’s tuning strength, and preferred direction. Again, tuning
strength was significantly higher for narrow spiking neurons.
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Discussion

Interpretation of narrow and wide spiking neural ensembles

It is tempting to assume that narrow and wide spiking neurons
correspond to inhibitory interneurons and pyramidal cells,
respectively, because generally, inhibitory interneurons
exhibit narrow spike waveform widths while pyramidal
cells have wider widths [37–40]. However, recent evidence
suggests that such a clear delineation is unlikely. One
study found a relationship between Betz cells, projection
cells in layer V of MI, and spike waveform width, such that

the largest Betz cells had the narrowest waveform widths
[22]. This population of cells is thought to comprise
approximately 10%–20% of neurons in layer V [41]; how-
ever, due to their large size, they are oversampled, and may
actually represent closer to 50% of recorded projection neu-
rons [41, 42]. Though the extent to which our data are subject
to this sampling bias remains unknown, it is nevertheless
likely that at least some of the narrow spiking neurons
we recorded were indeed large projection neurons.
Moreover, inhibitory interneurons exhibit a variety of spike
widths including a small proportion with wide waveforms

Figure 6. Narrow spiking neurons outperform wide spiking populations even after controlling for differences in response properties. We
repeatedly drew random samples of narrow and wide spiking neurons (ensemble size of 30 for rj040114, 20 for rj040207 and rs050225, and
10 for rs051013) while controlling for either firing rate, firing variance, tuning strength, preferred direction, or waveform SNR using a
matching procedure (see Methods for details). Narrow spiking neurons outperformed wide spiking neurons even after controlling for
differences in response properties.
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[23]. Thus, spike waveform width is not a reliable indicator of
cell type.

In the present study, we found that narrow spiking neural
ensembles substantially outperformed wide spiking ensem-
bles in a variety of decoding contexts, and that this
improvement in decoding performance was related to motor
output. A fairly straightforward, albeit speculative explana-
tion of this finding is that a substantial proportion of cells that
we classified as narrow spiking neurons correspond to the
largest Betz cells, and thus, the activity of the narrow spiking
neural population contains more direct information about
efferent motor activity.

Using Gaussian mixture models, we found that the dis-
tribution of spike waveform widths was best described by a
mixture of two Gaussians based on AIC values; however, this
finding does not imply that the true distribution of waveform
widths is bimodal, nor are we arguing that it is. Indeed, the

spike waveform width distribution was more clearly bimodal
in some datasets than others. We used the Gaussian mixture
model as a principled way of identifying the boundary
between narrow and wide populations. In this way, it repre-
sents an improvement over previous methods based on spe-
cifying an arbitrary threshold [21]. The mixture model also
provided a quantitative means of assessing the modality of the
waveform width distribution rather than assuming bimodality.

Application to a clinically relevant BMI

Recent reports have shown that small ensembles of neurons
are capable of achieving a high degree of decoding perfor-
mance [3, 43]. As BMIs scale to increasingly large degrees of
freedom, these small ensembles may be used to control
individual DoFs. In one study, individual control dimensions
were allocated 10 neurons based on a statistical selection

Figure 7. Underlying differences in response properties do not explain the difference in decoding performance. Here we show histograms of
the difference in decoding performance (of x and y velocity) between narrow and wide spiking populations. The average difference is
indicated by a vertical dashed line, while 0 is indicated by the solid vertical line. In almost every instance (except two indicated by stars),
narrow spiking units outperformed wide spiking units even after controlling for one response property.
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criterion [44]. In our data, we observed that small ensembles
of narrow spiking neurons could achieve performance com-
parable to, if not better than large ensembles of wide spiking
neurons. This suggests that a dynamic allocation scheme
could be devised based on the width of recorded neurons such
that some DoFs would be controlled by small ensembles of
narrow spiking neurons, while other DoFs would be con-
trolled by larger populations of wide spiking neurons yet each
DoF would have the same expected level of performance
despite being controlled by a different number of neurons.

An additional hurdle impeding the development of a
clinically viable BMI is that few properties of the neural
response are stable over long periods of time [45]. Here, we
found that the bimodal distribution of spike waveform widths
was similar across a timespan of several months. Addition-
ally, in every dataset we analyzed, we observed a variety of
spike waveform widths. Although there was some variability
in the boundary between narrow and wide populations across
animals, we observed both narrow and wide populations of
cells in seven datasets recorded from five animals.

In summary, our approach has been to identify physio-
logical properties of neurons that may reveal their utility in a
neural decoder; this approach is not incompatible with other
techniques aimed at improving decoding performance.
Indeed, other approaches including linear dimensionality
reduction and statistical model selection could be used in
conjunction with waveform information to identify neurons
within the narrow spiking neural population that are most
relevant for decoding. More generally, we emphasize that

neural decoding algorithms may be improved by using the
underlying biological properties of neural signals to inform
the design of these algorithms.
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