24,055 research outputs found

    Imaging interactions between the immune and cardiovascular systems in vivo by multiphoton microscopy

    Get PDF
    Several recent studies in immunology have used multiphoton laser-scanning microscopy to visualise the induction of an immune response in real time in vivo. These experiments are illuminating the cellular and molecular interactions involved in the induction, maintenance and regulation of immune responses. Similar approaches are being applied in cardiovascular research where there is an increasing body of evidence to support a significant role for the adaptive immune system in vascular disease. As such, we have begun to dissect the role of T lymphocytes in atherosclerosis in real time in vivo. Here, we provide step-by-step guides to the various stages involved in visualising the migration of T cells within a lymph node and their infiltration into inflamed tissues such as atherosclerotic arteries. These methods provide an insight into the mechanisms involved in the activation and function of immune cells in vivo

    A Dual Read-Out Assay to Evaluate the Potency of Compounds Active against Mycobacterium tuberculosis

    Get PDF
    PMCID: PMC3617142This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Beyond clustering: mean-field dynamics on networks with arbitrary subgraph composition

    Get PDF
    Clustering is the propensity of nodes that share a common neighbour to be connected. It is ubiquitous in many networks but poses many modelling challenges. Clustering typically manifests itself by a higher than expected frequency of triangles, and this has led to the principle of constructing networks from such building blocks. This approach has been generalised to networks being constructed from a set of more exotic subgraphs. As long as these are fully connected, it is then possible to derive mean-field models that approximate epidemic dynamics well. However, there are virtually no results for non-fully connected subgraphs. In this paper, we provide a general and automated approach to deriving a set of ordinary differential equations, or mean-field model, that describes, to a high degree of accuracy, the expected values of system-level quantities, such as the prevalence of infection. Our approach offers a previously unattainable degree of control over the arrangement of subgraphs and network characteristics such as classical node degree, variance and clustering. The combination of these features makes it possible to generate families of networks with different subgraph compositions while keeping classical network metrics constant. Using our approach, we show that higher-order structure realised either through the introduction of loops of different sizes or by generating networks based on different subgraphs but with identical degree distribution and clustering, leads to non-negligible differences in epidemic dynamics

    Point‐of‐care lung ultrasound in patients with COVID‐19 – a narrative review

    Get PDF
    Ultrasound imaging of the lung and associated tissues may play an important role in the management of patients with COVID‐19–associated lung injury. Compared with other monitoring modalities, such as auscultation or radiographic imaging, we argue lung ultrasound has high diagnostic accuracy, is ergonomically favourable and has fewer infection control implications. By informing the initiation, escalation, titration and weaning of respiratory support, lung ultrasound can be integrated into COVID‐19 care pathways for patients with respiratory failure. Given the unprecedented pressure on healthcare services currently, supporting and educating clinicians is a key enabler of the wider implementation of lung ultrasound. This narrative review provides a summary of evidence and clinical guidance for the use and interpretation of lung ultrasound for patients with moderate, severe and critical COVID‐19–associated lung injury. Mechanisms by which the potential lung ultrasound workforce can be deployed are explored, including a pragmatic approach to training, governance, imaging, interpretation of images and implementation of lung ultrasound into routine clinical practice

    Simulating bottom-up effects on predator productivity and consequences for the rebuilding timeline of a depleted population

    Get PDF
    Bottom-up control within ecosystems is characterized, in part, by predator populations exhibiting growth and recruitment changes in response to variability in prey density or production. Annual prey availability can vary more than 10-fold in marine ecosystems, with prey experiencing a dramatic increase or pulse in production within some years. To assess the bottom-up effects of such pulses on predator growth, production, and fisheries management, we developed an age-specific, predator-prey simulation model (parameterized for summer flounder, Paralichthys dentatus) based on simple hypothesized mechanisms for consumption, growth, and population dynamics. Pulses in each of the three modeled prey groups (small crustaceans, forage fish, larger fish prey) generated different magnitudes of change in predator weight-at-age (w), spawning stock biomass (S), fishery yield (Y), and recruitment (R), due to ontogenetic differences in growth potential and dietary composition across predator age classes. Increases in productivity of small forage fishes generated the greatest gains in predator w, S, Y, and R, relative to pulses of the other prey groups. Median increases in R following a prey pulse were minimal (\u3c 4%) except under high fishing rates that stimulated a stronger compensatory response in the population (8-11% increase in R), demonstrating the interactive role of top-down and bottom-up effects on predator productivity. Seasonal migration patterns determined the degree of spatiotemporal overlap of predators with the spatially constrained pulses in prey production. Prey pulses reduced the median time required for depleted populations to be rebuilt by 0-5% following declines in fishing pressure. Reductions in time to recovery were highly variable due to recruitment stochasticity, but stock recovery was more sensitive to the severity of harvest control measures than to availability of the non-limiting prey. Understanding the relative magnitudes of such bottom-up processes, particularly in the presence of varied fishing pressure can aid in developing ecosystem approaches to fisheries management that account for such ecological interactions more explicitly. (C) 2015 Elsevier B.V. All rights reserved

    Lobeline Attenuates the Locomotor-Activating Properties of Repeated Morphine Treatment in Rats

    Get PDF
    Purpose: Lobeline perturbs intra- and extracellular neurotransmitter levels and diminishes the in vitro and in vivo effects of psychostimulants. More recently, lobeline was shown to bind to μ opiate receptors, block the effects of opiate receptor agonists, and decrease heroin self-administration in rats. The present study determined the effect of lobeline on morphine-induced changes in locomotor behavior in rats.Methods: For 12 consecutive days (Days 1 - 12), male rats were administered lobeline (0.3 or 1 mg/kg) followed by morphine (5 or 10 mg/kg) and locomotor activity was measured. On Day 13, the effect of lobeline on the expression of morphine-induced increases in activity was determined.Results: With repeated morphine treatment, an increase in locomotor  activity was observed. In a dosedependent manner, lobeline decreased the morphine-induced increase in activity. Acute lobeline challenge on Day 13 also attenuated the expression of this morphine-induced increase in activity.                                                                               Conclusion: These results are consistent with previous work where lobeline blocks the locomotoractivtating properties of psychostimulants, and these findings support an emerging literature suggesting that lobeline produces its behavioral effects through an interaction with μ opiate receptors.Keywords: Behavior, Morphine, Locomotor activity, Behavioural sensitization, μ Opiate receptor

    Investigating the association of rs2910164 with cancer predisposition in an Irish cohort.

    Get PDF
    IntroductionMicroRNAs (miRNAs) are small noncoding RNA molecules that exert post-transcriptional effects on gene expression by binding with cis-regulatory regions in target messenger RNA (mRNA). Polymorphisms in genes encoding miRNAs or in miRNA-mRNA binding sites confer deleterious epigenetic effects on cancer risk. miR-146a has a role in inflammation and may have a role as a tumour suppressor. The polymorphism rs2910164 in the MIR146A gene encoding pre-miR-146a has been implicated in several inflammatory pathologies, including cancers of the breast and thyroid, although evidence for the associations has been conflicting in different populations. We aimed to further investigate the association of this variant with these two cancers in an Irish cohort.MethodsThe study group comprised patients with breast cancer (BC), patients with differentiated thyroid cancer (DTC) and unaffected controls. Germline DNA was extracted from blood or from saliva collected using the DNA Genotek Oragene 575 collection kit, using crystallisation precipitation, and genotyped using TaqMan-based PCR. Data were analysed using SPSS, v22.ResultsThe total study group included 1516 participants. This comprised 1386 Irish participants; 724 unaffected individuals (controls), 523 patients with breast cancer (BC), 136 patients with differentiated thyroid cancer (DTC) and three patients with dual primary breast and thyroid cancer. An additional cohort of 130 patients with DTC from the South of France was also genotyped for the variant. The variant was detected with a minor allele frequency (MAF) of 0.19 in controls, 0.22 in BC and 0.27 and 0.26 in DTC cases from Ireland and France, respectively. The variant was not significantly associated with BC (per allele odds ratio = 1.20 (0.98-1.46), P  = 0.07), but was associated with DTC in Irish patients (per allele OR = 1.59 (1.18-2.14), P = 0.002).ConclusionThe rs2910164 variant in MIR146A is significantly associated with DTC, but is not significantly associated with BC in this cohort

    Making the longest sugars: a chemical synthesis of heparin-related [4](n) oligosaccharides from 16-mer to 40-mer

    Get PDF
    The chemical synthesis of long oligosaccharides remains a major challenge. In particular, the synthesis of glycosaminoglycan (GAG) oligosaccharides belonging to the heparin and heparan sulfate (H/HS) family has been a high profile target, particularly with respect to the longer heparanome. Herein we describe a synthesis of the longest heparin-related oligosaccharide to date and concurrently provide an entry to the longest synthetic oligosaccharides of any type yet reported. Specifically, the iterative construction of a series of [4]n-mer heparin-backbone oligosaccharides ranging from 16-mer through to the 40-mer in length is described. This demonstrates for the first time the viability of generating long sequence heparanoids by chemical synthesis, via practical solution-phase synthesis. Pure-Shift HSQC NMR provides a dramatic improvement in anomeric signal resolution, allowing full resolution of all 12 anomeric protons and extrapolation to support anomeric integrity of the longer species. A chemically pure 6-O-desfulfated GlcNS-IdoAS icosasaccharide (20-mer) represents the longest pure synthetic heparin-like oligosaccharide
    corecore