1,868 research outputs found

    A Mixed Methods Investigation into Latino Fathers\u27 Roles in Their Children\u27s Educational Expectations

    Get PDF
    Latino fathers make meaningful contributions toward their children’s educational expectations. Cultural factors and structural barriers may shape unique parenting roles for Latino fathers and their influence on their children’s educational expectations. To explore the culturally nuanced roles of Latino fathers, we conducted a convergent mixed-methods study with 244 emerging adults to gain their perceptions of their fathers’ parenting roles and how those roles influenced the relation between the fathers’ and emerging adult children’s educational expectations. A content analysis of qualitative data identified positive (e.g. motivation and emotional support) and negative roles (e.g. family absence and overworking) that participants perceived their fathers had in their education. Quantitatively, Latino fathers’ educational expectations predicted emerging adults’ own educational expectations, with the strongest association for fathers coded as having a positive parental role. Findings from this study support the need for more inclusive and culturally relevant research practices with Latino fathers and families. Supporting and incorporating the roles of Latino fathers in the school system may increase students’ educational expectations

    3D Mapping with an Unmanned Aerial Vehicle

    Get PDF
    Missionary aviation pilots often have to land their planes on remote airstrips that might be unsafe due to runway obstructions such as encroaching vegetation or large objects that were unknowingly placed on the runway. The Falcon Unmanned Aerial Vehicle (UAV) team is partnering with ITEC to develop an imaging system using a UAV to scan these airstrips to detect these obstructions. ITEC was founded by Steve Saint, the son of martyred missionary Nate Saint, to develop technologies to aid missionaries in their work. This video highlights the work of the Falcon UAV team and the basic terms and definitions for understanding the work of the team. The Falcon UAV team focuses primarily on the use of automated 3D mapping and photogrammetry by drones to help identify obstructions to pilots landing on remote airstrips. In this video, we will explore 3D mapping and compare different options for drones to purchase and software to use in the process of mapping information.https://mosaic.messiah.edu/engr2020/1007/thumbnail.jp

    Machine learning the electronic structure of matter across temperatures

    Full text link
    We introduce machine learning (ML) models that predict the electronic structure of materials across a wide temperature range. Our models employ neural networks and are trained on density functional theory (DFT) data. Unlike other ML models that use DFT data, our models directly predict the local density of states (LDOS) of the electronic structure. This provides several advantages, including access to multiple observables such as the electronic density and electronic total free energy. Moreover, our models account for both the electronic and ionic temperatures independently, making them ideal for applications like laser-heating of matter. We validate the efficacy of our LDOS-based models on a metallic test system. They accurately capture energetic effects induced by variations in ionic and electronic temperatures over a broad temperature range, even when trained on a subset of these temperatures. These findings open up exciting opportunities for investigating the electronic structure of materials under both ambient and extreme conditions

    Heart rate variability in insomnia patients: A critical review of the literature

    Get PDF
    Heart rate variability (HRV) is an objective marker that provides insight into autonomic nervous system dynamics. There is conflicting evidence regarding the presence of HRV impairment in insomnia patients. Web-based databases were used to systematically search the literature for all studies that compared the HRV of insomnia patients to controls or reported the HRV of insomnia patients before and after an intervention. 22 relevant papers were identified. Study characteristics were summarised, HRV measures were extracted and a risk of bias assessment for each study was performed. We were limited in our ability to synthesise outcome measures and perform meta-analyses due to considerable differences in patient (and control) selection, study protocols, measurement and processing techniques and outcome reporting. Risk of bias was deemed to be high in the majority of studies. As such, we cannot confirm that HRV is reliably impaired in insomnia patients nor determine the HRV response to interventions. Whilst HRV impairment in insomnia is a widely accepted concept, it is not supported by empirical evidence. Large longitudinal studies incorporating 24-hour recordings are required to elucidate the precise nature of HRV dynamics in insomnia patients

    Serotonin 5-HT\u3csub\u3e2\u3c/sub\u3e receptor activation prevents allergic asthma in a mouse model

    Get PDF
    © 2015 the American Physiological Society. Asthma is an inflammatory disease of the lung characterized by airways hyper-responsiveness (AHR), inflammation, and mucus hyperproduction. Current main-stream therapies include bronchodilators that relieve bronchoconstriction and inhaled glucocorticoids to reduce inflammation. The small molecule hormone and neurotransmitter serotonin has long been known to be involved in inflammatory processes; however, its precise role in asthma is unknown. We have previously established that activation of serotonin 5-hydroxytryptamine (5-HT)2A receptors has potent anti-inflammatory activity in primary cultures of vascular tissues and in the whole animal in vasculature and gut tissues. The 5-HT2A receptor agonist, (R)-2,5-dimethoxy-4-iodoamphetamine [(R)-DOI] is especially potent. In this work, we have examined the effect of (R)-DOI in an established mouse model of allergic asthma. In the ovalbumin mouse model of allergic inflammation, we demonstrate that inhalation of (R)-DOI prevents the development of many key features of allergic asthma, including AHR, mucus hyperproduction, airways inflammation, and pulmonary eosinophil recruitment. Our results highlight a likely role of the 5-HT2 receptors in allergic airways disease and suggest that 5-HT2 receptor agonists may represent an effective and novel small molecule-based therapy for asthma

    Database, Features, and Machine Learning Model to Identify Thermally Driven Metal-Insulator Transition Compounds

    Full text link
    Metal-insulator transition (MIT) compounds are materials that may exhibit insulating or metallic behavior, depending on the physical conditions, and are of immense fundamental interest owing to their potential applications in emerging microelectronics. There is a dearth of thermally-driven MIT materials, however, which makes delineating these compounds from those that are exclusively insulating or metallic challenging. Here we report a material database comprising temperature-controlled MITs (and metals and insulators with similar chemical composition and stoichiometries to the MIT compounds) from high quality experimental literature, built through a combination of materials-domain knowledge and natural language processing. We featurize the dataset using compositional, structural, and energetic descriptors, including two MIT relevant energy scales, an estimated Hubbard interaction and the charge transfer energy, as well as the structure-bond-stress metric referred to as the global-instability index (GII). We then perform supervised classification, constructing three electronic-state classifiers: metal vs non-metal (M), insulator vs non-insulator (I), and MIT vs non-MIT (T). We identify two important descriptors that separate metals, insulators, and MIT materials in a 2D feature space: the average deviation of the covalent radius and the range of the Mendeleev number. We further elaborate on other important features (GII and Ewald energy), and examine how they affect classification of binary vanadium and titanium oxides. We discuss the relationship of these atomic features to the physical interactions underlying MITs in the rare-earth nickelate family. Last, we implement an online version of the classifiers, enabling quick probabilistic class predictions by uploading a crystallographic structure file
    • …
    corecore