3,634 research outputs found

    Analysis of Linsker's simulations of Hebbian rules

    Get PDF
    Linsker has reported the development of center-surround receptive fields and oriented receptive fields in simulations of a Hebb-type equation in a linear network. The dynamics of the learning rule are analyzed in terms of the eigenvectors of the covariance matrix of cell activities. Analytic and computational results for Linsker's covariance matrices, and some general theorems, lead to an explanation of the emergence of center-surround and certain oriented structures. We estimate criteria for the parameter regime in which center-surround structures emerge

    The Role of Constraints in Hebbian Learning

    Get PDF
    Models of unsupervised, correlation-based (Hebbian) synaptic plasticity are typically unstable: either all synapses grow until each reaches the maximum allowed strength, or all synapses decay to zero strength. A common method of avoiding these outcomes is to use a constraint that conserves or limits the total synaptic strength over a cell. We study the dynamic effects of such constraints. Two methods of enforcing a constraint are distinguished, multiplicative and subtractive. For otherwise linear learning rules, multiplicative enforcement of a constraint results in dynamics that converge to the principal eigenvector of the operator determining unconstrained synaptic development. Subtractive enforcement, in contrast, typically leads to a final state in which almost all synaptic strengths reach either the maximum or minimum allowed value. This final state is often dominated by weight configurations other than the principal eigenvector of the unconstrained operator. Multiplicative enforcement yields a “graded” receptive field in which most mutually correlated inputs are represented, whereas subtractive enforcement yields a receptive field that is “sharpened” to a subset of maximally correlated inputs. If two equivalent input populations (e.g., two eyes) innervate a common target, multiplicative enforcement prevents their segregation (ocular dominance segregation) when the two populations are weakly correlated; whereas subtractive enforcement allows segregation under these circumstances. These results may be used to understand constraints both over output cells and over input cells. A variety of rules that can implement constrained dynamics are discussed

    A system for advanced facial animation

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1996.Includes bibliographical references (leaves 35-36).by Kenneth D. Miller, III.M.Eng

    The Effects of Short-Term Synaptic Depression at Thalamocortical Synapses on Orientation Tuning in Cat V1

    Get PDF
    We examine the effects of short-term synaptic depression on the orientation tuning of the LGN input to simple cells in cat primary visual cortex (V1). The total LGN input has an untuned component as well as a tuned component, both of which grow with stimulus contrast. The untuned component is not visible in the firing rate responses of the simple cells. The suppression of the contribution of the untuned input component to firing rate responses is key to establishing orientation selectivity and its invariance with stimulus contrast. It has been argued that synaptic depression of LGN inputs could contribute to the selective suppression of the untuned component and thus contribute to the tuning observed in simple cells. We examine this using a model fit to the depression observed at thalamocortical synapses in-vivo, and compare this to an earlier model fit based on in-vitro observations. We examine the tuning of both the conductance and the firing rate induced in simple cells by the net LGN input. We find that depression causes minimal suppression of the untuned component. The primary effect of depression is to cause the contrast response curve to saturate at lower contrasts without differentially affecting the tuned vs. untuned components. This effect is slightly weaker for in-vivo vs. in-vitro parameters. Thus, synaptic depression of LGN inputs does not appreciably contribute to the orientation tuning of V1 simple cells

    Educational Strategies for Reducing Medication Errors Committed by Student Nurses: A Literature Review

    Get PDF
    Medication errors cause harm, yet most of them are preventable (Institute of Medicine, 2006). Nurses spend 40% of their time administering medications; therefore they play a key role in the reduction of medication errors. Little empirical evidence has been collected about the effectiveness of nursing education in reducing medication errors committed by nursing students. Traditional educational interventions focus on the five rights of medication administration; however, the literature shows that interventions focused on instilling a culture of safety have a greater impact on reducing medication errors. The purpose of this article is to review educational strategies that have been implemented and tested in pre-licensure nursing programs to reduce medication errors committed by nursing students
    • …
    corecore