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Abstract

This thesis describes a system for extracting three-dimensional models from two-dimensional
images over the restricted domain of frontal images of human faces. A three-dimensional
face model template is fit to a three-dimensional digitizations of a set of training subjects.
The standard-form models allow different subjects to be treated in a uniform manner. The
particular template model chosen is almost identical to one used for head tracking and
expression extraction from video, allowing more accurate modelling of the subject.

The models are used to synthesize small face images with a series of discrete orientations,
and then subjected to Karhunen-Loéve expansion (principal component analysis), yielding
one low-dimensional of coupled eigenimages and eigenmodes per orientation. Subsequently,
face images within the range of rotations used to generate the eigenspaces can be projected
onto the eigenspaces, yielding a coarse estimate of facial orientation, recovering missing
data, and producing an approximate facial model.
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Chapter 1

Introduction

1.1 The Problem

Recovery of three-dimensional structure from arbitrary, two-dimensional images is one of
the most important open problems in the field of Machine Vision. Model recovery has a vast
array of uses, as many as there are uses for human vision, including scene understanding,
object tracking in threespace, and numerous others. Unfortunately, the general problem is
a rather difficult one. Many an otherwise fine idea has stumbled over this hurdle. A stellar
cast of researchers have spent decades on the problem, with significant, but limited, progress.
The functional inverse of computer graphics, structure-from-image recovery seeks to extract
three-dimensional information from two-dimensional images, recovering the information lost
in the projection process.

While the problem seems trivial—we do it all the time, and think nothing of it—it is
in fact one of the more difficult areas of Artificial Intelligence. The main computational
snag is that is ill-posed: there are an infinity of mathematically valid solutions, as a two-
dimensional image has three dimensions of information (z, y, and intensity), whereas a
three-dimensional model has four (z, y, 2, and intensity). Even if one makes relatively strict
assumptions about material properties of objects in the scene, smoothness and integrability
of surfaces, and so on, there are still many equally valid solutions. When such difficulties
as noise and incomplete information appear, the intractability becomes still greater.

If the problem is so hard, then how does the human brain do it? The trouble is, the
answer is usually “we don’t know, really.” The visual cortex is immense, comprising a
good third of the brain, and has fantastically complex and generally unknown structure;
this fact alone would seem to indicate that the problem is rather difficult. However, what
is known is that the brain takes advantage of expectations, prior knowledge, and context
clues. Much to the dismay and horror of those who thought machine vision would be easy,
vast quantities of prior knowledge are required to solve the problem correctly, and even then
are not completely sufficient: witness the panoply of optical illusions.

From an intuitive standpoint, most of the possible three-dimensional objects correspond-
ing to a given two-dimensional image are completely implausible, requiring precise alignment
of disjoint fragments with the viewer, or other peculiar arrangements. For example, through
long experience, one knows how a chair looks like from a wide variety of angles. It is not
a collection of countless tiny shards positioned and oriented very precisely to give an im-
pression of “chairness”; instead, it is a rather simple structure, with a horizontal seat, a
vertical back, and four vertical legs. In essence, when one looks at an image of a chair, one



implicitly recalls every chair seen from every direction, placing strong constraints on the
possible arrangements of matter that could produce that image.

It would then seem that the brain is capable of discerning to what “class” of object a
particular image belongs. Within that class, there are certainly variations, but the class
nonetheless greatly restricts the three-dimensional structure. The “shape space” within
the class may even be low dimensional, and is certainly of lower dimension than the set of
all possible objects. The structure recovery problem then reduces to determining to which
object class the image belongs, and then estimating the “parameters” within its shape space.

1.2 The Goal

In this thesis we will reduce our scope to a somewhat narrow, yet still important, category
of object: the human face. Granted that human interaction is of great importance, and
that the face is the seat of communication, this is not a crippling restriction. In fact, the
human face has sufficient complexity and subtlety to offer significant challenge on its own.
Our brains are keenly aware of subtle nuances and details, indicating the importance of the
face.

From prior experience, one knows that the human head has a very consistent shape:
roughly spheroidal in form, with an ear on each side, a protruding nose in the front, in-
dented eye sockets above, and a horizontal mouth below. All individuality lies within small
perturbations of this basic structure.

Now, if we have an image of an arbitrary face, we immediately know that it has this same
basic form, with a bit of variation of the details to produce the image. So, all we need to
do now is estimate these details to recover the model. This “all” is, of course, not entirely
trivial, but is indeed a great deal simpler than solving the general structure-from-image
problem.

First and foremost, we must parameterize the possible variations. To do this, we use
the statistical technique of principal component analysis developed by Karhunen in 1946
(1], Loéve in 1955 [2], and Jolliffe in 1986 [3], and first applied to face images by Sirovich
and Kirby in 1987 [4] and 1990 [5]. With this technique, we can extract the relatively small
subspace of human faces hidden within the huge space of all possible structures. With a
surprisingly small number of principal features, we can characterize a wide array of faces
with little loss of information. The most significant eigenmodes tend to be obvious features
such as lighting variations, skin color, facial hair, glasses, and other common details. Less
significant modes tend to be rather obscure, having little intuitive meaning,.

By projecting a face image onto this subspace, we can readily recover parameter values
that describe the face. This alone is quite useful for numerous applications, including face
recognition (as described by Turk and Pentland [6], and many others) and model-based
compression of images, (described by Moghaddam in [7]). The values of the parameters
form “clusters” that characterize particular faces.

The next step, then, is to correlate image features and model features with principal
component analysis by joining the space of images with the space of models. Within this
larger space, certain variations of pixel intensities and of vertex positions will tend to co-
vary, and principal component analysis will pick out these correspondences. For example,
if a dark region on the forehead tends to correspond with a protrusion in the model due
to hair, then principal component analysis will make this connection. With a large enough
sample of images and the corresponding models, we can, in essence, “train” the computer



to recover three-dimensional structure from a two-dimensional image by determining which
features are present or absent in a given image of a human face.

The next few chapters describe the system. Chapter 2 gives a non-technical overview of
the basic operation of the model-recovery system, from model creation to principal compo-
nent analysis, to model reconstruction. Chapter 3 gives a more in-depth description of the
underpinnings of the system. Chapter 4 shows results from using the system on a training
set of eight three-dimensional models and a test set of sixteen face images.



Chapter 2

Approach

2.1 Overview

In order to create a correspondence between facial images and facial models, we must first
acquire some facial models. To this end, we utilize the three-dimensional data produced
by a Cyberware Rapid 3D Color Digitizer [8]. This device sweeps a laser stripe across an
object as it revolves around it, determining the distance and reflectance of each point. This
yields a densely-sampled grid of range and color values in cylindrical coordinates.

In its pure form, the range data is unfortunately not as useful as one would like, at least
for analysis purposes. While the full data set can be used for imaging, the massive quantity
of points resulting from blind cylindrical-to-cartesian coordinate transformation makes it
extremely unwieldy. The sampling density and the overall dimensions of the sampling grid
are adjustable by the user, the lighting of subjects will vary, and the data set will have
numerous missing points where the subject is nonreflective or steeply inclined relative to
the beam. A more serious problem is that the subject of each scan is not necessarily in the
same place or facing in the same direction. We must somehow regularize this information
to eliminate these undesirable extraneous variations.

Atick, Griffin, and Redlich [9] solve the problem by using a database in which all the
head models are of the same dimension, and completely ignore the texture map, using only
range data. They also use an entire range image, 256 x 200, without attempting to reduce
the complexity of the model.

To do this, we warp a generic three-dimensional human head model produced by View-
Point Datalabs [10] to the shape of the Cyberware range data, producing a model with
known structure. We then scale and orient the model so that the eyes, nose, and mouth
lie in known positions when rendered. For a number of training faces, the models are ren-
dered with a variety of small rotations to allow the model recovery to compensate for slight
changes in orientation.

The set of face models and corresponding images are then subjected to principal-
component analysis to determine the covariances of the images and the models. This will
produce a relatively low-dimensional space of image features and the model features to
which they correspond.

Once this feature space has been created, a face image can be projected onto the space to
recover missing information. In this case, the missing information is the three-dimensional
model corresponding to the given image.



2.2 Creating Models from Cyberware Data

Creating a standard face model from a Cyberware data set involves only a bit of work
and is not especially computation-intensive. The idea is to use an appropriate model as
a “template”, deforming it into the proper shape. Instead of transforming the scan data
into a three-dimensional object and matching the three-dimensional head template to it, we
transform the three-dimensional template into a two-dimensional object and align it with
the data. '

First, corresponding features are found in both the scan data and a known template
model. We have chosen as representative features the centers of the eyes, the tip of the
nose, the left and right corners and center of the mouth, and the top, bottom, left, and
right sides of the face. For a more articulate model, more features could be chosen. One can
choose an arbitrary number of features, with more correspondences leading to progressively
better alignment at the expense of requiring more effort.

In the Cyberware data, a variety of methods can be used to find the important features
ranging in complexity from a manual search to “distance from feature-space” eigenfeature
matching [7]. In any case, the feature points should be placed as accurately as possible to
minimize undesirable variations in model vertex positions.

In the ViewPoint template model, the only truly practical method is to manually locate
each of the ten feature points. It may well be possible to render an image of the model and
use eigenfeature matching, but the synthetic nature of the model may make feature-finding
difficult. In any case, the operation need only be done once.

The feature points are then brought into correspondence, and the two-dimensional tem-
plate model is warped into the shape of the face of the subject. Within non-overlapping
regions bounded by three feature points, the two-dimensional vertices of the template are
linearly transformed to move them into place. At each vertex, the range and texture co-
ordinates are extracted from the Cyberware data, generating a three-dimensional, texture-
mapped model.

Once the model has been generated, it is scaled and rotated so that a properly-placed
orthographic camera will produce an image with the feature positions in the same places
as those of the 7500-image FERET database.

2.3 Creating Models from Images

Creating a standard face model from an image is somewhat more involved, and requires
the creation of an eigenspace, a set of eigenfaces that encode image facial features and the
corresponding model features.

A reasonably large training set of three-dimensional, texture-mapped face models are
rendered as a series of “face chips”, small images consisting of only the face, with the
edges blended away to reduce boundary effects. To tolerate small changes in orientation
of the faces to be reconstructed, each sythetic face chip is rendered with a different small
rotation, generally in the range of a few tenths of a radian in any one direction. Since the
laser-scanned face is already, in essence, “front lit” by the digitizer, no additiona lighting of
the training models is necessary. A simple “decal” texture mapping will produce the best
results.view.

These face chips, and the models which generate them, are combined into a group
of training sets, one per orientation, each a matrix of column vectors. The vectors are
normalized to zero mean, unit variance, the mean of all the normalized images is removed,
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and the Karhunen-Loéve expansion is applied, extracting orthonormal eigenmodes of the
face images and corresponding face models. The most significant modes, those accounting
for the largest variances (that is, the ones with the largest eigenvalues) are saved for future
use.

To reconstruct a model from an image, the image is projected onto each of the eigen-
modes, measuring the “amount” of that particular eigenmode in the image. Once all the
weights have been found, the eigenmodes are linearly combined to produce an image of the
face, projected onto the eigenspace. Any missing data will be filled in, yielding a complete
image and model. The eigenspace that minimizes the reconstruction error will be assumed
to be the best orientation, and the model will be reconstructed from that eigenspace.

The model can then be texture-mapped with the image fairly easily, since the recovered
model has the same scale as the training models, and the mapping between the training
models and training images is known. The vertices of the model are projected into the
image and the pixel positions extracted as texture coordinates (after appropriate scaling).
Portions of the model steeply inclined with respect to the viewing direction will have reduced
detail density, as the image pixels will be spread out over a larger surface area.

2.4 Putting the Model to Use

Since the models derived from three-dimensional data and the models derived from two-
dimensional images have the same structural form as the generic template model, anything
that uses the template model can also use the derived models.

For example, Basu uses an ellipsoid approximation in an optical-flow Kalman filter head-
motion tracker [11]. More recently, he has switched to the same ViewPoint head model as
we use here. While the generic head fits most faces reasonably well, a more accurate
shape estimate would improve tracking accuracy by better accounting for pixel motion. His
system uses a full-frontal view to achieve an initial “lock”, determining head position and
orientation. This frontal image can be transformed into the FERET image format required
for model extraction, and a structure estimate derived. The model used by Basu’s motion
tracker and this model recovery system are very similar, both being derived from the same
ViewPoint head model.

Similarly, the recovered head models can be used in a facial animation system similar
to that of Lee, Terzopoulos, and Waters [12] when no three-dimensional scan is available.
While the recovered models are of lower quality than full scans, they are better than no
models at all.

With appropriate training subjects, models can be recovered with varying facial actua-
tions as smiles, frowns, open and closed mouth, raised eyebrows, open and closed eyes, and
so forth. This capability would be useful in an facial-animation-from-video system such as
the one developed by Essa, Basu, Darrell, and Pentland [13], where it could provide rough
estimates of facial expression to be refined by video tracking.

Photobook [14], an image database browser that classifies images by similarity, utilizes
an enormous database of images. The FERET database consists of over 7500 images taken
at a photography show, with the eyes in consistent locations. The photography booth used
two light-emitting diodes arranged so as to be visible only when the eyes are in very specific
locations in space. The subjects were instructed to take their picture only when they could
see both lights. The eye positions are accurate to within one pixel, though nose and mouth
positions are less accurate, as the subjects were free to rotate their heads, and there was little

11



constraint on the distance to the camera (save the size of the booth). Using this database
to generate models would produce 7500 three-dimensional models of moderate quality while
only requiring a hundred or so Cyberware head scans for training purposes. Such a technique
is thus an extremely cost-effective way to acquire three-dimensional models.

12



Chapter 3

Methodology

3.1 Overview

We shall go through the process in detail from start to finish, creating an eigenspace from
a training set of human head scans, and ending with a reconstructed model from an image.
The procedure involves transforming the Cyberware scan data into a useful, consistent
format, rendering a series of images, performing principal component analysis on the images
and models to create a set of orthonormal features, and finally projecting an image onto
the feature vectors to reconstruct a model.

3.2 Creating Standardized Models from Cyberware Data

When a full set of Cyberware scan data is available, production of a useful head model is a
relatively simple affair. The process basically reduces to aligning a template model to the
face data and extracting the appropriate data points. While the procedure is conceptually
simple, actual execution requires some attention to detail, and even then requires manual
editing to achieve truly natural results.

3.2.1 Cyberware Data Preprocessing

Since the Cyberware 3D scanner uses a laser to scan the subject, extremely dark or strongly
inclined features will prevent a successful digitization of some points, as insufficient light will
return to the range sensor. The raw range data is thus full of holes which will throw off any
attempt at modelling the subject. To patch up these dropouts, some form of interpolation
must be used.

The interpolation algorithm used to repair the range data processes the array in “lexi-
cograpical” order (left to right, top to bottom). As it sweeps through the range values, it
can assume that the pixels directly to the left and directly above the current position are
valid, as any holes in those locations will have already been filled in by the algorithm in
an earlier step. Figure 3-1 shows a typical invalid pixel and its surrounding region. The
interpolated value is taken as a weighted average of the two known pixels and the range
of the first valid point below the current position (75444,), and the range of the first valid

13



Figure 3-1: Interpolation of an invalid range by weighted a

point to the right (7444,,y), with each range weighted invers
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Terzopoulos, and Waters [12], this interpolation approach r
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3.2.2 ViewPoint Model Preprocessing

A three-dimensional human head model from ViewPoint D
structural template for the face models. This model suffers {
just a face, but an entire head complete with neck and parts
of several discrete parts. To simplify later analysis, the rele
extracted and the separate components joined.

To this end, three clipping planes are defined, one to crop
jaw, another to crop off the ears and back of the head, and t
the head. The parameters of these clipping planes were foun
orientation and position to eliminate unwanted portions of th
are “uniquified” by mapping multiple points with identical (z
small tolerance) onto a single point. This yields a continug
twelve hundred vertices, complete with surface normals. T
cropped, single-component ViewPoint model as points, lines

3.2.3 Feature Finding

One of the more important preprocessing steps is to locate
the eyes, nose, mouth, and top, bottom, left, and right edg
to match the ViewPoint head with the Cyberware head, anc
head with the Photobook image template.

The currently-defined critical feature points are, in order
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Figure 3-2: The cropped ViewPoint Datalabs head model, rendered as points, wireframe,
and Phong-shaded polygons.

seen from the front), the center of the right eye (as seen from the front), the tip of the nose,
the left corner of the mouth, the center of the mouth, the right corner of the mouth, the
top of the forehead, the bottom of the face (where the chin meets the neck), the edge of the
jawline just in front of the left ear, and the edge of the jawline just in front of the right ear.
To ensure full coverage of the face, four additional points are computed from the left, right,
top, and bottom points of the face to define a parallelogram (ideally a rectangle). Defining
Pt as the two-dimensional point at the top of the face, pj at the bottom, p at the left lide,
and p;, at the right, the four corner points 5y, pir, Py, and f, are:

. (B —p) - (B — 7)) (P — P1)

= 17 - Il

ﬁtr — ]—)—t + ((ﬁr - ﬁt) Eﬁr —_’ﬁl))(ﬁr —ﬁl)
7. — pill?

o = s (=) (G = AE~ 7
15 — pill?

ﬁbr s ﬁb i ((ﬁr = ﬁb) _(’p—.r __‘ﬁl))(ﬁr "ﬁl)
15 — pill?

For Cyberware data, an adaptation of the distance-from-feature-space technique de-
scribed by Moghaddam [7] is the best way to locate the relevant points. One notable
advantage of this method on Cyberware data is that structural information from the range
data is available in addition to the intensity information from the texture. Since we are
primarily interested in best-match position detection and not true reconstruction, we can
use a relatively small number of eigenmodes (say, five to ten).

To train the feature finder, we examine a set of training faces, locate important feature
positions by hand, and extract intensity and range regions centered on the feature positions.
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Figure 3-3: Cyberware texture data sbowing manually-extracted feature positions.

For each region, we perform principal-component analysis, saving the first few eigenmodes
of both the intensity and the range images.

Once the elgenfea,tures have been found, the quality of the match between an eigen-
feature and a region ® of the image is inversely proportional to the mean square error,
€

e=® -

where (I;f the projection of ® onto the feature space. The position of the region producing
the global minimum can be considered the position of the feature. Geometric constraints
can improve the accuracy by “weeding out” obviously bogus feature positions. Figure 3-3
shows a Cyberware texture map with the positions of the features marked by white dots.

For ViewPoint data, the model is “flattened” into a two-dimensional bitmap image by
transforming each vertex #; in the model from cartesian @; = (z,y,2) coordinates into
cylindrical @; = (6,y) (discarding the range component) by the relation 6 = arctan(y/z).
The resulting coordinates are rescaled into the range [0..511] and displayed as (z,y) points
so that critical features can be located by hand and saved into a parameter file. This
process need only be done once, but it must be done well, as all subsequent Cyberware data
regularizations use the same template. Figure 3-4 shows an example template model with
the main features highlighted with black circles.

3.2.4 Regularization of Face Data

In addition to the incompleteness problem mentioned in the Cyberware Data Preprocessing
section, another difficulty with Cyberware scan data is that the subject is not necessarily
in exactly the same location or facing in exactly the same direction. The pixel locations of
important features are not consistent between subjects or even between scans of the same
subject. Worse still, not all scans have the same resolution or dimensions.

To achieve meaningful analysis of the human head, the number of data points for each

subject must be ezactly the same, and corresponding featurFs must be placed at the same
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Figure 3-4: Flattened ViewPoint face model with key feature points marked.

locations in the data. To satisfy this necessity, the three-dimensional face model will be
“morphed” as closely as possible into the shape of the Cyberware scan subject, both to
reduce the amount of data involved from over a hundred thousand points to a few thousand,
and and to enforce structural consistency and feature matching between subjects.

This is achieved by performing a two-dimensional linear transformation of the flattened
ViewPoint vertices 7} and extracting the range at those points. Feature positions are taken in
groups of three, defining non-overlapping two-dimensional triangular regions of the face to be
warped from the flattened ViewPoint model to the Cyberware data. Lee, Terzopoulos, and
Waters [12] use a somewhat more complex method, fitting contours of the template model
to corresponding contours in the range data and then using a spring energy-minimization
approach to position the remaining points.

To warp a region j from the ViewPoint template to the Cyberware data set, we define
an affine transformation, 7. The three corners of a source reglon, Si1, sJ 2 and 53, and
the three corners of the corresponding destination region, d, 15 d, 2, and dJ 3, are taken as
column 3-vectors in homogeneous coordinates (with 1 as the third coordinate) and combined
into two matrices, S; and D;:

( sjylox 8.7,21-” 3.71371"
S; = Sy Si2y  S53y
\ 1 1 1

( d h1,% dj121x d]:3’x
D; = | djpy dj2y djsy
1 1 1

The transformation matrix 7 is computed from these by right-multiplying D; by the
inverse of §;:

T; = Dij_l
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Figure 3-5: A point v inside a triangular region bounded by points s;, s; and s3.

T; will map the corners of source region j directly onto those of destination region
j, “stretching” the region like a rubber sheet, carrying all points inside the region along.
How do we know if a given point ¥ is inside source region j? A very simple and efficient
inside-outside test: @ will be within the triangular region defined by &1, 3j2, and ;3
if and only if the cross-products (¥} — 5;1) X (8j2 — §,1), (¥} — 8j2) X (3j3 — §,2), and
(7! = 8,3) x (81 — §j3) have the same sign (see Figure 3-5). For two-dimensional data,
taking the third (z) coordinate to be zero simplifies the cross-product operation to @ X b to
azby — ayb;.

Once the region containing ¥} is found, ¥ is converted to a column 3-vector in two-
dimensional homogeneous coordinates and left-multiplied by T to produce a point ¢ in
two-dimensional Cyberware head coordinates. The range at each point & is sampled by
taking the weighted average of the range data in a 5 X 5 square region centered on the

point:
2 2
Ri= ). Y w(a,b)r(zi—a,y; — b)
b=—2a=—2

where w(a, b) are the weighting coefficients chosen to be a pseudo-Gaussian blurring kernel,
so as to reduce the influence of any one range pixel:

1 4 6 4 1

1 4 16 24 16 4

w(-2..2,-2..2) = 256 6 24 36 24 6
4 16 24 16 4

1 4 6 4 1

The resulting “smoothed” range R; and the (z,y) location of &, (z;,:), are combined
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Figure 3-6: The average of 7500 Photobook FERET database images

to form a three-dimensional cartesian-coordinate Cyberware head point ¢;:
—r; sin(5=;)

¢; = =
—7; cos(ﬁzi)

The result is a simplified Cyberware head model with the same mesh structure as the
ViewPoint model template. The texture coordinates corresponding to (z;,y;) can be bound
to each vertex of the model, allowing the Cyberware tex‘:Elre data to be applied to the
model. This produces a very realistic yet very compact model almost indistinguishable

from a rendition using the full data set.

3.2.5 Alignment to Photobook FERET Format

The preceding procedure regularizes and greatly simplifies t‘[he data set, but does not solve
the more fundamental problem of variations in position and rotation. We will use the
128 x 128 images from the Photobook FERET database, each with the features in approxi-
mately the same location. Examination of the average head (see figure 3-6) yields canonical
positions: the left eye is at (58.0,59.0), the right eye at (83.0,59.0), the tip of the nose at
(70.5,76.0), and the center of the mouth at (70.5,91.0). The nose and mouth constraints
are not solid, but hold for many of the images. While there is significant variation within
the data set, these feature positions best represent those of pver 7500 database images.

We define three-dimensional feature position vectors €, €., 7, and m as the position
of the left eye, right eye, the tip of the nose, and the center of the mouth, repectively,
derived from corresponding two-dimensional feature positions by extracting the range at
those points and converting to rectangular coordinates. The position vector € is taken as
the midpoint between the two eye positions,

1
€= 5(6} 1 é.r)

To align the model images with the average FERET face image, we set the the y com-
ponent of €— 7 (the vertical distance between the eyes and nose) to 17 (= 76 — 59), the y
component of 7 — 7 (the vertical distance between the nose and mouth) to 15 (= 91 — 76),
and the z component of 7 — [ (the horizontal distance between the eyes) to 25 (= 83 — 58).
The model derived from the Cyberware data set is in Cyberware pixel coordinates, and must
be transformed to meet these requirements. In addition, toTsta,ndardize model position in
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three-space, we translate the model so that the midpoint of the eyes, f; is placed at the
origin.

The first step in alignment is to eliminate rotational variations about the y and z axes,
yielding a head that is oriented vertically, facing a viewer along the 2z axis. We define a
plane bisecting the head defined by the three points €, 7, and 73, the plane normal # being

(8- 7) x (€= 1)
(€ — @) x (€ m)||

=

We then align this bisecting plane so that it intersects the viewer by finding an axis of
rotation 7 and angle p that rotate the plane normal to point along the = axis. To find these,
we take the cross-product of the plane normal, 7 with the z axis (¢ = [100]T). Taking
advantage of the fact that the magnitude of @ x b is ||d@]|||5|| sin p:

nXZE
lI7 x &||
p = arccos(||n x &||)

F o=

The entire model is then rotated about # by p.

The second step is to eliminate rotations about the z axis, by finding a rotation 6 that
will set the ratio of the eye-nose distance and the eye-mouth distance to 17:32. Assuming
orthographic projection, the image distances between the eyes and nose and the eyes and
mouth are

e, —n, = (e;—mn;)sinfd+ (e, —ny)cosd
e, —my, = (e;—m;)sinf+ (e, —my)cosh

Rearranging and solving for #, we get an inverse-tangent formula for the proper angle

of rotation about the z axis:

(ey —my) — :13—;(61/ — my)

f# = arctan
(€2 — nz) — (e, — m;)

The final step is to normalize the size and position of the model. Scale by 24/(r., — 1)
in the z and z directions, and by 32/(ej, — m;) in the y direction, after rotation.

Note that this transformation places the features at positions centered around (0,0)
rather than (70,59). While this is not exactly the location we specified earlier, it is a
somewhat more natural position for a three-dimensional model, and judicious choice of
camera position will move the face into the correct place in the image.

3.3 Generating Models from Images, Part 1

Images of faces are a highly constrained domain, being in general very similar in structure.
Every human face has two eyes, a nose, and a mouth at essentially fixed locations. If
these feature positions are aligned to specific points in the image, then there will be strong
similarities between faces. That is, the images will not be dispersed uniformly throughout
the space of all possible images, but will instead be clustered somewhere in image space and
can be described by a relatively small number of dimensions. Using the Karhunen-Loéve
expansion (eigenvectors of the autocorrelation matrix) we can perform principal component
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Figure 3-7: Sample training images, showing 15 standard orientations.

analysis and find the vectors that best account for the distribution. It is quite possible to
define a relatively small subspace of linearly independent face components, a “face space”.

We are, however, interested in a somewhat larger potential space, the image/model space
correlating images and the models that generate them. By performing principal component
analysis in this space, we hope to correlate image features with model features, permitting
approximate reconstruction of face models from images.

3.3.1 Vector Generation

After a regularized, aligned, texture-mapped face model has been generated from a Cyber-
ware scan, the model is rendered into a 51 x 88 subregion of the full 128 x 128 image, with
(44,22) as the upper left corner. When the rendered face is masked with the alpha-channel
used by Photobook for face recognition, substantial regions of the image are always black,
and need not be included in the output.

At the rendering stage, a fully textured model is available, having been constructed
explicitly from the Cyberware scan data. This model can rendered with any alteration
desired, allowing a wide variety of details to be recovered. For example, one can apply
small rotations to make reconstruction resistent to slight variations in orientation, pulling
out correspondingly rotated models from the images. Similarly, different lighting directions
and different facial movements (open and closed mouth, open and closed eyes, smiling,
frowning, etc.) can be applied to the model, allowing similar images to be reconstructed
with enhanced accuracy.

Fifteen different orientations were chosen as a reasonable set of representatives, sweeping
across a five by three array of orientations spaced approximately 0.1 radians (= 5.7°) apart.
This distance is a compromise between sampling density and coverage. While the images
appear quite similar, the differences in the models are more significant, leading to severe
feature mismatch errors if the increments are made too large. Figure 3-7 shows a typical
face in each of the fifteen orientations, with horizontal rotation varying between —0.2 and
+0.2 radians and vertical rotations varying between —0.1 and +0.1 radians.

Fach of the synthetic face images, along with the (z,y, z) coordinates of the vertices
of the model that generated it, are strung out to create M training vectors [y, T, ...,
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T, each of length N. Images with different rotations are kept in separate training sets,
leaving one image per subject per training set. This will produce a separate eigenspace
for each orientation, reducing computational load and preventing unlike orientations from
intermixing.

3.3.2 Face Normalization

The overall intensity of an image and the shape of the model are essentially uncorrelated.
To decouple the face brightness and deformation magnitude, each synthetic face image Iy
is normalized to zero mean, unit variance by, for each image pixel, v,, subtracting off the
average pixel value, 7,

N
¥y = Z Tk
k=1
and dividing by the square root of the sum of squares:

/ Y=

WO 11 B
Y e R %

This normalization step produces an image vector I with all variations in overall bright-
ness and contrast removed, leaving only salient features.
From the training set, we define the average face ¥ by

G-Llsm
- M'i=l :

Subtracting the average image and average model from each of the training images and
training models, we get differences ®,, @4, ..., ¢y,

-

&, =T/ -¥

1

3.3.3 Generation of the Covariance Matrix

The set of training vectors ®; are then sub jected to principal component analysis, which
finds a set of M orthonormal vectors iy, 43, ..., iy Which best represent the distribution
of the data in image/model space. The kth such vector @y is chosen so that

1 ¥ -
Ak=MZ(ﬁk‘I’i)

=1

is maximized, while subject to the constraint of orthonormality,

T )1, ifl=k
Uy = b = { 0, otherwise

These quantities, ugx and A are simply the eigenvectors and eigenvalues of the covariance
matrix

R
C—MFF
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where F is a matrix whose columns are the M normalized training faces,
F=[®1®;---®p]

Unfortunately, C has the highly undesirable property of being huge: it is a square matrix
with the length of each side being the length of each training vectors, N, which is the
number of pixels in an image plus the number of vertices times the number of components
per vertex. For even modest image sizes and simple models, diagonalization of the resulting
N x N matrix is exceedingly painful, even on modern computer hardware.

The M training samples define a hyperplane of dimension M —1 (two points define a line,
three define a plane, and so on) within the full N-dimensional space of images and models.
Once the mean is subtracted out, this hyperplane will pass through the origin, requiring
only M — 1 orthogonal vectors to span it. There will thus be at most M — 1 nonzero
eigenvalues and linearly independent eigenvectors of the covariance matrix. Clearly, most
of the work done in diagonalizing C is wasted if M < N (which is usually the case).

The “snap-shot” method of Sirovich [5] asserts that the eigenmodes are a linear combi-
nation of the faces. Instead of grinding away at C, we can instead define a much smaller,
M X M covariance matrix L,

L = F'F

We can find the eigenvalues p and eigenvectors o3 of L and then take appropriate linear
combinations of the face vectors ®; to recover the eigenvectors of C. See the Appendix for
a more detailed description of the eigenanalysis method used to find pj and .

3.3.4 Generating Eigenfaces from Eigenvalues

We now return to the subject of recovering the length- NV eigenvectors of C, the eigenfaces,
from the length-M eigenvectors of L.

Earlier we stated (without proof) that the eigenvalues @, i3, ..., @y—1 of C could be
easily recovered from the eigenvalues %, ¥, ..., vecvpr—; of L. Now we present the proof.
Left-multiplying the equation for the kth eigenvector of L by F and regrouping,

(FTF)Yo, = i
F(FTF)’Tfk 1 F g
(FFT)(F#) = pe(Fx)

As can be seen from the last equation, the vectors F'%; are the eigenvectors of FFT = C.
Thus, we can find the kth eigenvalue @ of C by left-multiplying the kth eigenvalue v of L
by F. The eigenvectors @y, ¥a, ..., Ua specify linear combinations of the training faces to
construct each eigenface @; (i =1,...,M):

J=1
The nonzero eigenvalues, A and p are in fact the same for both, since

(FFT)(Foi) = pe(Fx)
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Figure 3-8: Mean and first 7 eigenimages for the four extreme rotations.

is just another way of writing
(FF )iy = \pily

The magnitude of each eigenvalue gives the variance captured by the corresponding
eigenvector, and provides an indication of the relative importance of that eigenvector. By
selecting the eigenvectors corresponding to the largest M’ eigenvalues (M’ < M), we can
reduce the dimension of the eigenspace while introducing a minimal amount of error.

To make the eigenspace U = FV orthonormal, we divide each eigenvector #; by the
square root of the corresponding eigenvalue, setting the variance to one:

7=
1 /—,U/i
Figure 3-8 shows the mean face, \il', and the first M’ = 7 eigenfaces, iy, s, ...,

ti7, for the four extreme orientations, (—0.30, +0.15), (+0.30,40.15), (—0.30, —0.15), and
(+0.30, —0.15) radians in the z and y directions. Note that the general character of each
eigenface remains essentially unchanged, save for rotation.

3.4 Generating Models from Images, part 2

Using the principal components derived from the training set, one can project an arbitrary
Photobook-format image onto the face space to acquire a reconstruction of that image. The
eigenspace is capable of estimating missing portions of an input vector. In this case, the
missing portion is the three-dimensional model we seek to reconstruct from the image.
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3.4.1 Projection

With an orthonormal eigenspace, we can project a Photobook-style face image vector onto
the space. As preparation, the image to be projected, f, is reduced to zero-mean, unit-
variance by, for each element, v,, subtracting off the mean pixel value, 4 and dividing by
the square root of the sum of squares (as with the training data):

/ Y~
L ey ——
Zk=l(7k - 7)

The scaling factor and average pixel value are saved for later reconstruction, allowing
the projected image to be restored to the appropriate brightness and contrast.

For each of the separate eigenspaces generated for each orientation, we subtract off the
average face for that orientation, v

rd o) Id
leage I‘lma.ge ‘Illmage

Since we have no better estimate, we implicitly assume that the model portion of Tis
the average head model. The model portion of ®? is therefore filled with zeros,

&% a1 = [000---0]"

&9 can be transformed into its eigenface components (i.e., projected onto the eigenspace
of principal face components) by simply taking the dot-product with each eigenface, @, i3,

@
[T MI-

2ANT ~d

w,‘f =(® )T"k

or, in matrix form,

04 = (84T U?
where (14 = [wiwd - --wi,]T. Each weight describes “how much” of each orthogonal eigen-
face is present in &e.

3.4.2 Reconstruction

To reconstruct the image from eigenface basis d, we take a weighted sum of the eigenfaces
to get an approximate image ©¢, which is ® projected onto the eigenspace:

MI
oY _E: d =d
= w,-u,-
=1

or, in matrix form,
é’d — (Q’d)TUd
The reconstruction will not be exact, but can be quite close if the face is within the
hyperplane spanned by the training set. The reconstruction process will fill in any missing
data by mapping the face onto the closest (in the RMS sense) point in the eigenspace.
Unlike the original face vector ®, a reconstruction © will come complete with a model.
The optimal eigenspace, UP, yields the minimum reconstruction error,

e=|®P — 6P| < ||&¢ - 6% forall d
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and can be safely assumed to most closely correspond to the orientation of the face in
the image. The recovered model, @andel will possess the appropriate rotation, bringing its

features into alignment with the image.

3.4.3 Reconstitution

The optimal reconstructed face ©? is must be converted into a useful format. Like the
products of the vector generation phase, 0D is a long column of numbers with no internal
structure. The vector must be reconstituted into a human-usable form: a greyscale image
and a 3D model.

The image portion, (:jfnage, is trivial to transform into a human-viewable image. The
pixel values are scaled by the square-root of the sum of squares that was removed during
normalization, and the average pixel value is added back in. The resulting values are
rounded to the nearest integer and clamped to the range [0..255], then output as 8-bit
greyscale pixels with an appropriate image header.

The model portion, @godd must be combined with the ViewPoint face model template
to transform it from a simple list of points to a full three-dimensional model. Since the
points are in exactly the same order as in the template, representing the positions of the
deformed vertices of the ViewPoint model, they can be substituted for the corresponding
vertices. The resulting model has the same structure as the template, but the shape of the
reconstructed face.

For added realism, the original Photobook FERET image is texture-mapped onto the
model. Since the training models were expressly constructed so that image pixel distances
and model spatial distances are identical, finding texture coordinates consists of nothing
more than extracting the z and y coordinates of each vertex, shifting it to the appropriate
place in the image by moving the origin to (70,59), and scaling the coordinates into the
range [0..1]. Smoothly interpolating texture values produces a model with slightly blurry
features, but no pixelization. Unless feature positions are outside of the range of orientations
provided in the fifteen eigenspaces, the model feature positions will correspond to within
0.05 radians in each direction.

If a large image has been reduced in size to FERET format, the original image can
be used as the texture map instead of the smaller image. This will yield a much higher-
resolution texture map, and a model of superior quality. If the image is large enough, the
resolution can exceed that of the Cyberware scanner.
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Chapter 4

Results

For testing purposes, a set of eight Cyberware head scans were converted using the afore-
mentioned techniques. The centers of the eyes, tip of the nose, center and left and right
sides of the mouth, and top, bottom, left, and right sides of the face were found by visual
inspection.

The ViewPoint template model was then warped to fit the data, and selected points
extracted to form the eight texture-mapped, three-dimensional face models shown in Figure
4-1. The models were then placed in fifteen slightly different orientations and rendered as
51 x 88 masked images and output as large composite vectors of image pixels and model
vertices. Figure 4-2 shows frontal-view images of the training-set models.

Principal component analysis was performed to elucidate a linearly independent basis
of the face space, yielding eigenfaces and eigenmodels. Images for model recovery were then
projected onto the reduced-dimension face space, returning models. Keeping the seven
eigenvectors produced yields only very small errors (mostly due to roundoff). With a larger
training set, truncating to half or less will still yield satisfactory results. Figure 4-3 shows a
series of in-sample images of various rotations projected onto the eigenspace and rendered.
The differences are quite difficult to see, becoming apparent primarily when differencing the
images. Table 4-4 shows the root-mean-square reconstruction errors for the same face over
the same rotations.

For images outside the training set, the errors are significantly larger, as the eigenspaces
derived from the small training set cannot reproduce the images well. Table 4-6 gives RMS
errors for the test images. The projected image still vaguely resembles the original, and the
model produces decent results when texture mapped with the original image. Figure 4-5
shows sixteen Photobook FERET database images projected onto the eigenspace. Due to
the small training set, the reconstructed images are not of especially high quality. Some of
the faces have rotations beyond the range used in the training set, leading to significantly
reduced accuracy, but the range of orientations provided by the fifteen eigenspaces will
capture most variations.

From the Photobook images shown in Figure 4-5, the models shown in Figure 4-8 were
recovered, and the original images applied as texture maps. For comparison, the same
images were texture mapped onto the undeformed template head, yielding the images shown
in Figure 4-9. Whereas the eigenmodel technique managed to capture the overall shape of
many of the faces, the texture-mapped template head has tremendous difficulties around the
edge of the jawline. In several cases, the face image is clearly “pasted” onto the front of the
face, with the edges of the jawline in the image being mapped onto the cheek of the model.
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Figure 4-1: Models derived from Cyberware training set.

Figure 4-2: Frontal-view masked images derived from models.

Similarly, the eigenmodels capture hair and forehead shape, mapping dark hair into a slight
protrusion, or mapping bald forehead into a smoothly-curved surface. In comparison, the
template forehead is always the same shape regardless of the presence or absence of hair.
Figure 4-7 shows two models, one derived from eigenmodels, the other derived from the
template head. While the recovered models are far from perfect, they are clearly superior
to the template model.
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Figure 4-3: Comparison of original and projected training images for 15 standard rotations.

-0.30 -0.15 0.00 +0.15 +0.30
+0.15 | 0.037073 0.037145 0.037296 0.037311 0.037332
0.00 | 0.037266 0.037781 0.037905 0.037975 0.037821
-0.15 | 0.037679 0.038078 0.038326 0.038393 0.037887

Figure 4-4: Typical in-sample RMS errors for 15 standard rotations.
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Figure 4-5: Comparison of 16 original and projected Photobook FERET database images.

0.469104 0.283834 0.377362 0.318605
0.282798 0.376462 0.478344 0.278389
0.315224 0.308800 0.528300 0.369649
0.393337 0.348274 0.411763 0.343560

Figure 4-6: RMS errors for 16 reconstructed Photobook FERET database images.

Figure 4-7: Comparison of texture-mapped recovered model and texture-mapped, unde-
formed template model.
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Figure 4-8: Recovered models for 16 Photobook FERET database images.

31



Figure 4-9: 16 Photobook FERET database images mapped onto undeformed template.
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Chapter 5

Conclusion

The model recovery system has one major intrinsic benefit: since the training models can
be rendered in any style or with any alteration desired to create training images, a large
number of categories of face image can be produced and subsequently reconstructed from
similar images with enhanced accuracy. This capability is already used to tolerate small
rotations and recover rotated models. It could also be used to tolerate lighting direction
changes, scaling, facial expressions, and so forth. In essence, anything done to the training
models and reflected in the rendered images is something that can be recovered from an
image.

As can be seen from the results in the preceding chapter, model reconstruction from
images using eigenspaces yields great promise. The reconstructed models have somewhat
reduced detail, but can be of a level of quality comparable to the originals, save for a few
minor feature mismatches. Even with manual feature tracking and a small training set, an
extremely diverse collection of faces were dimensionalized into models of acceptable quality.
There are a few caveats and limitations present, but none that cannot be surmounted.

5.1 Known Problems

Several image features will cause significant mismatches between the original and recon-
structed image. Fortunately, most are preventable or correctable with a little care.

The first category of mismatch comes from face images with major rotations; if the
image to be reconstructed is not mostly frontal, and thus outside the range of representative
orientations, the reconstruction will be quite poor. The system will in essence be trying
to project an image from far outside the spanned hyperplane onto the hyperplane, yielding
nonsensical results. Fortunately, a variety of techniques exist to reorient an image to frontal
facing. The missing detail on the far side of the face can be approximated, yielding adequate
results.

The second category of mismatch comes from significant differences in lighting. Certain
features such as dark hair low down on the face are easily confused with shadow or brightness
(similar but for a sign change) due to lighting. Cyberware scans are, in essence, front lit
from all directions, as the scanning beam is always radial to the centerline of the subject’s
head. Images for reconstruction should also be front-lit, but non-frontal lighting can be
corrected with intensity correction. Nastar and Pentland [15] present just such a system
to manipulate lighting and reorient images. With light-reorientation, creating eigenspaces
for each lighting direction is unnecessary, though possibly helpful for recovery of lighting
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direction.

The third category of mismatch comes from images of people with non-attached features
such as glasses. Since the Cyberware scan data is in essence a two-dimensional function,
it cannot represent multivalued ranges. There already exists a problem with the detail
inside the nostrils, but little can be done to correct the situation except touch up the
models with postprocessing. To avoid trouble, no subject should wear eyeglasses during
the Cyberware scan. Images of people with glasses will not cause too much difficulty, as
the non-representable detail will be mostly ignored, but the image with eyeglasses will be
texturemapped onto the glasses-free model, yielding odd results (one of the test images is
of a face with glasses). The eyeglasses can be added to the model later, using traditional
three-dimensional modelling techniques.

5.2 Future Work

For future work, there are several significant improvements to the system that would greatly
enhance its performance.

First, a training set of eight models is woefully inadequate; at least a hundred models
are needed to capture common features and significant variations. The current training
set is quite sparse, with insufficient coverage of face space to make generalizations. Large
databases of Cyberware head scans are not difficult to find.

Second, a distance-from-feature-space feature finder needs to be added. For the eight
training images, manual feature extraction was sufficient, but for several hundred, the pro-
cess must be automated. While a few models must be analyzed by hand to train the feature
finder, the finder can “bootstrap” itself by making an initial guess, refined by the user.
The resulting location is then added to the feature training set, and the eigenfeatures are
recomputed.

Third, a similar automated feature-finder should be applied to the images to be recon-
structed. While the multiple eigenspaces can handle small rotations, they do not handle
variations in face size or position. Repositioning and rescaling the image so that the feature
position constraints are met will reduce most of the feature mismatches present with the
current system.

Lighting correction and image reorientation will allow a much greater variety of images
to be successfully processed for reconstruction. While altered images have missing detail,
sometimes incomplete images are the best available.

In conclusion, this structure-from-image recovery system, while still nascent, holds great
promise.
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Appendix A

Eigenanalysis

Since the training data is real (pixel intensities are real, as are vertex positions), and FTF =
(FTF)T = FT(FT)T = FTF, L is both symmetric and real. We will therefore use Jacobi
method for finding the eigenvalues and eigenvectors of a symmetric real matrix presented
in Numerical recipes in C [16] to find pq, p2, ..., par—1 and corresponding eigenvectors i,
62, ooy UM —1-

The Jacobi method consists of a sequence of orthogonal similarity transformations that
reduce L to diagonal form, to the limits of machine precision. If » such transformations are
required, the series of transformations looks something like:

L — P;LP;
— P;'P{LP,P,
—

— P;'...P;'P{'LP,P,---P,

Each transformation P; is a Jacobi Rotation, a plane rotation constructed to annihilate
an off-diagonal matrix element. Alas, successive transformations partially undo previous
transformations, but off-diagonal elements do tend to become smaller and smaller until
they vanish. Accumulating the product of the transformations, V.= PyP,---P,, gives the
eigenvectors, while the elements of the final diagonal matrix VTLV are the eigenvalues.

A Jacobi Rotation P, is just the identity matrix I with changes in rows and columns
p and ¢:

Ppp = Pgg = COS &

and
Ppg = —Pgp = sin ¢.

This orthonormal rotation transforms L via
! _pT
L' = quLqu

Since the only elements that differ from identity are in rows and columns p and g, only
rows p and g of and columns p and ¢ of L change. P;qL differs from L only on rows p and
g, while LP,, differs from L only in columns p and ¢q. Multiplying out the transformation
and taking advantage of L’s symmetry, we get a set of equations (for r # p and r # ¢):

L, = cos¢l,—singly,
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L, = cos¢lyy+singl,

Ly = cos? ¢ I, + sin® @ Iy, — 25sin P cos @ Iy

= sin® @ lpy + cos® ¢ lyg + 25in P cos @ Iy,

= (cos?¢ —sin? @)l , + sin ¢ cos d(lyp — lq)

The objective is to zero all the off-diagonal elements by a series of rotations. To this
end, set l;q to zero, which gives an expression for ¢,

!
qu

!
lpq

f = cot2¢
cos? ¢ — sin? ¢
2sin ¢ cos ¢

— qu — lpp
21,

Defining ¢ = sin ¢/ cos ¢, a new expression in 8 is
2 +2t0-1=0

The smaller root of this equation can be found via the quadratic formula, with the
discriminant in the denominator,

0
t=
RPN

This yields relations for sin ¢ and cos ¢,

1
2+1
sing = tcos¢

cos¢p =

Now, since [, is zero (we explicitly set it), the equations for the altered elements of L
become (for r # p and r # q)

l:p = lyp—sing(lyq + 7lp)
iy = lbg+sing(l,—7ly)

l;,p = lp — tlpq
l;q = lgg+ 1ty
where
T =ta 9 = __sinqb
TRRYET + cos¢

How do we know that the method actually converges to anything? As proof that the
Jacobi method does indeed yield a diagonal matrix, consider the sum of the squares of the
off-diagonal elements:

S =" |inl?

r#s
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The transformation implies that, since I, and, by symmetry, [, are zero,
5'=5- |lpq|2 - Ilrml2 =5- 2|lpq|2

The sum decreases monotonically, bounded below by zero, as various elements are an-
nihilated. Since /,, can be chosen arbitrarily, the sequence can be made to converge to
zero.

The end product is a diagonal matrix A of the eigenvalues of L, since

A=VTLV

where
V= P1P2P3 . 'Pn

with the P,’s being successive Jacobi rotation matrices. The columns of V are the eigen-
vectors of L (because LV = VA), and V can be computed by applying V; = V;_;P; at
each stage of computation, with the initial matrix Vo = I. Specifically, for column r,

dy = v (s#ps#0)
= cos¢ vy, —sin @ vy

Vg = SN vpp+ COSP vy

In what order should the off-diagonal elements be annihilated? The original strategy
used by Jacobi was to choose the largest off-diagonal element and annihilate it, but this
technique is not suitable for machine calculation. Instead, the cyclic Jacobi method is used,
where the elements are zeroed in strict order, circulating through the matrix, proceeding
down the rows and across the columns.

Aside from a few accuracy- and performance-enhancing subtleties used by the Numerical
Recipes algorithm, that is the essence of the Jacobi method.
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