10,190 research outputs found

    Impact of Vegetative Treatment Systems on Multiple Measures of Antibiotic Resistance in Agricultural Wastewater

    Get PDF
    Wastewater is an important vector of antibiotic resistant bacteria and antibiotic resistance genes (ARB/G). While there is broad agreement that ARB/G from agricultural (ag) wastewaters can be transported through the environment and may contribute to untreatable infectious disease in humans and animals, there remain large knowledge gaps surrounding applied details on the types and amounts of ARB/G associated with different agricultural wastewater treatment options and different ag production systems. This study evaluates a vegetative treatment system (VTS) built to treat the wastewater from a beef cattle feedlot. Samples were collected for three years, and plated on multiple media types to enumerate tetracycline and cefotaxime-resistant bacteria. Enterobacteriaceae isolates (n = 822) were characterized for carriage of tetracycline resistance genes, and E. coli isolates (n = 673) were phenotyped to determine multi-drug resistance (MDR) profiles. Tetracycline resistance in feedlot runoff wastewater was 2-to-3 orders of magnitude higher compared to rainfall runoff from the VTS fields, indicating efficacy of the VTA for reducing ARB over time following wastewater application. Clear differences in MDR profiles were observed based on the specific media on which a sample was plated. This result highlights the importance of method, especially in the context of isolate-based surveillance and monitoring of ARB in agricultural wastewaters

    Modeling the Behavior of the Surface to Liquid Interfaces in an Electrolytic Liquid

    Get PDF
    Understanding the mechanism for charge transfer between electrodes within an electrolyte dissolved in water is vital to better understanding the sources of electrical noise in the system. This research compares the electrical properties of liquid top gated graphene devices with the properties of two metal probes to model the system. By measuring the impedance of these systems at different frequencies, it is possible to develop a model of their electrical properties and to consider techniques to improve signal to noise at graphene interfaces

    Expendable bubble tiltmeter for geophysical monitoring

    Get PDF
    An unusually rugged highly sensitive and inexpensive bubble tiltmeter has been designed, tested, and built in quantity. These tiltmeters are presently used on two volcanoes and an Alaskan glacier, where they continuously monitor surface tilts of geological interest. This paper discusses the mechanical, thermal, and electric details of the meter, and illustrates its performance characteristics in both large ( > 10^(-4) radian) and small ( < 10^(-6) radian) tilt environments. The meter's ultimate sensitivity is better than 2 X 10^(-8) radians rms for short periods (hours), and its useful dynamic range is greater than 10^4. Included is a short description of field use of the instrument for volcano monitoring

    The Role of Projection in the Control of Bird Flocks

    Full text link
    Swarming is a conspicuous behavioural trait observed in bird flocks, fish shoals, insect swarms and mammal herds. It is thought to improve collective awareness and offer protection from predators. Many current models involve the hypothesis that information coordinating motion is exchanged between neighbors. We argue that such local interactions alone are insufficient to explain the organization of large flocks of birds and that the mechanism for the exchange of long-ranged information necessary to control their density remains unknown. We show that large flocks self-organize to the maximum density at which a typical individual is still just able to see out of the flock in many directions. Such flocks are marginally opaque - an external observer can also just still see a substantial fraction of sky through the flock. Although seemingly intuitive we show that this need not be the case; flocks could easily be highly diffuse or entirely opaque. The emergence of marginal opacity strongly constrains how individuals interact with each other within large swarms. It also provides a mechanism for global interactions: An individual can respond to the projection of the flock that it sees. This provides for faster information transfer and hence rapid flock dynamics, another advantage over local models. From a behavioural perspective it optimizes the information available to each bird while maintaining the protection of a dense, coherent flock.Comment: PNAS early edition published online at http://www.pnas.org/cgi/doi/10.1073/pnas.140220211

    Synchronization of dynamical hypernetworks: dimensionality reduction through simultaneous block-diagonalization of matrices

    Full text link
    We present a general framework to study stability of the synchronous solution for a hypernetwork of coupled dynamical systems. We are able to reduce the dimensionality of the problem by using simultaneous block-diagonalization of matrices. We obtain necessary and sufficient conditions for stability of the synchronous solution in terms of a set of lower-dimensional problems and test the predictions of our low-dimensional analysis through numerical simulations. Under certain conditions, this technique may yield a substantial reduction of the dimensionality of the problem. For example, for a class of dynamical hypernetworks analyzed in the paper, we discover that arbitrarily large networks can be reduced to a collection of subsystems of dimensionality no more than 2. We apply our reduction techique to a number of different examples, including a class of undirected unweighted hypermotifs of three nodes.Comment: 9 pages, 6 figures, accepted for publication in Phys. Rev.

    Genome Assembly Improvement and Mapping Convergently Evolved Skeletal Traits in Sticklebacks with Genotyping-by-Sequencing.

    Get PDF
    Marine populations of the threespine stickleback (Gasterosteus aculeatus) have repeatedly colonized and rapidly adapted to freshwater habitats, providing a powerful system to map the genetic architecture of evolved traits. Here, we developed and applied a binned genotyping-by-sequencing (GBS) method to build dense genome-wide linkage maps of sticklebacks using two large marine by freshwater F2 crosses of more than 350 fish each. The resulting linkage maps significantly improve the genome assembly by anchoring 78 new scaffolds to chromosomes, reorienting 40 scaffolds, and rearranging scaffolds in 4 locations. In the revised genome assembly, 94.6% of the assembly was anchored to a chromosome. To assess linkage map quality, we mapped quantitative trait loci (QTL) controlling lateral plate number, which mapped as expected to a 200-kb genomic region containing Ectodysplasin, as well as a chromosome 7 QTL overlapping a previously identified modifier QTL. Finally, we mapped eight QTL controlling convergently evolved reductions in gill raker length in the two crosses, which revealed that this classic adaptive trait has a surprisingly modular and nonparallel genetic basis

    Modeling and analysis of systems with nonlinear functional dependence on random quantities

    Full text link
    Many real-world systems exhibit noisy evolution; interpreting their finite-time behavior as arising from continuous-time processes (in the It\^o or Stratonovich sense) has led to significant success in modeling and analysis in a variety of fields. Here we argue that a class of differential equations where evolution depends nonlinearly on a random or effectively-random quantity may exhibit finite-time stochastic behavior in line with an equivalent It\^o process, which is of great utility for their numerical simulation and theoretical analysis. We put forward a method for this conversion, develop an equilibrium-moment relation for It\^o attractors, and show that this relation holds for our example system. This work enables the theoretical and numerical examination of a wide class of mathematical models which might otherwise be oversimplified due to a lack of appropriate tools.Comment: 13 pages, 6 figure

    Thermodynamic Studies of [H_(2)Rh(diphosphine)_2]^+ and [HRh(diphosphine)_(2)(CH_(3)CN)]^(2+) Complexes in Acetonitrile

    Get PDF
    Thermodynamic studies of a series of [H_(2)Rh(PP)_2]^+ and [HRh(PP)_(2)(CH_(3)CN)]^(2+) complexes have been carried out in acetonitrile. Seven different diphosphine (PP) ligands were selected to allow variation of the electronic properties of the ligand substituents, the cone angles, and the natural bite angles (NBAs). Oxidative addition of H_2 to [Rh(PP)_2]^+ complexes is favored by diphosphine ligands with large NBAs, small cone angles, and electron donating substituents, with the NBA being the dominant factor. Large pK_a values for [HRh(PP)_(2)(CH_(3)CN)]^(2+) complexes are favored by small ligand cone angles, small NBAs, and electron donating substituents with the cone angles playing a major role. The hydride donor abilities of [H_(2)Rh(PP)_2]^+ complexes increase as the NBAs decrease, the cone angles decrease, and the electron donor abilities of the substituents increase. These results indicate that if solvent coordination is involved in hydride transfer or proton transfer reactions, the observed trends can be understood in terms of a combination of two different steric effects, NBAs and cone angles, and electron-donor effects of the ligand substituents
    corecore