2,567 research outputs found

    Global water cycle

    Get PDF
    The primary objective is to determine the scope and interactions of the global water cycle with all components of the Earth system and to understand how it stimulates and regulates changes on both global and regional scales. The following subject areas are covered: (1) water vapor variability; (2) multi-phase water analysis; (3) diabatic heating; (4) MSU (Microwave Sounding Unit) temperature analysis; (5) Optimal precipitation and streamflow analysis; (6) CCM (Community Climate Model) hydrological cycle; (7) CCM1 climate sensitivity to lower boundary forcing; and (8) mesoscale modeling of atmosphere/surface interaction

    MQ-25A Manned/Unmanned Teaming

    Get PDF
    NPS NRP Project PosterManned aircraft coordinate with tankers locally through voice, hand signals and lighting. MQ-25A coordination is through a remote operator, typically through beyond line of sight communications. Degradation or loss of that communications link would inhibit refueling capability. Human machine teaming may be a key enabler for increased reliability and resilience in the unmanned tanking mission. Further, advanced human machine teaming capability may enable force multiplier missions, increasing war fighting capabilities of the carrier air wing. Co-Active Design and interdependence analysis are two proven methods for identifying human machine teaming requirements that enable resilience, reliability, and identify potential pitfalls. This year's research effort focuses on enhancing mission capabilities by exploring two key areas: enhanced ISR capabilities, and operations in non-permissive communications and position, navigation, and timing environments.ASN(RDA) - Research, Development, and AcquisitionThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.

    MQ-25A Manned/Unmanned Teaming

    Get PDF
    NPS NRP Executive SummaryManned aircraft coordinate with tankers locally through voice, hand signals and lighting. MQ-25A coordination is through a remote operator, typically through beyond line of sight communications. Degradation or loss of that communications link would inhibit refueling capability. Human machine teaming may be a key enabler for increased reliability and resilience in the unmanned tanking mission. Further, advanced human machine teaming capability may enable force multiplier missions, increasing war fighting capabilities of the carrier air wing. Co-Active Design and interdependence analysis are two proven methods for identifying human machine teaming requirements that enable resilience, reliability, and identify potential pitfalls. This year's research effort focuses on enhancing mission capabilities by exploring two key areas: enhanced ISR capabilities, and operations in non-permissive communications and position, navigation, and timing environments.ASN(RDA) - Research, Development, and AcquisitionThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.

    Rulemaking in 140 Characters or Less: Social Networking and Public Participation in Rulemaking

    Get PDF
    Rulemaking—the process by which administrative agencies make new regulations—has long been a target for egovernment efforts. The process is now one of the most important ways the federal government makes public policy. Moreover, transparency and participation rights are already part of its legal structure. The first generation of federal erulemaking involved putting the conventional process online by creating an e-docket of rulemaking materials and allowing online submission of public comments. Now the Obama administration is urging agencies to embark on the second generation of technology-assisted rulemaking, by bringing social media into the process. In this Article we describe the initial results of a pilot Rulemaking 2.0 system, Regulation Room, with particular emphasis on its social networking and other Web 2.0 elements. Web 2.0 technologies and methods seem well suited to overcoming one of the principal barriers to broader, better public participation in rulemaking: unawareness that a rulemaking of interest is going on. We talk here about the successes and obstacles to social-media based outreach in the first two rulemakings offered on Regulation Room. Our experience confirms the power of viral information spreading on the Web, but also warns that outcomes can be shaped by circumstances difficult, if not impossible, for the outreach effort to control. There are two additional substantial barriers to broader, better public participation in rulemaking: ignorance of the rulemaking process, and the information overload of voluminous and complex rulemaking materials. Social media are less obviously suited to lowering these barriers. We describe here the design elements and human intervention strategies being used in Regulation Room, with some success, to overcome process ignorance and information overload. However, it is important to recognize that the paradigmatic Web 2.0 user experience involves behaviors fundamentally at odds with the goals of such strategies. One of these is the ubiquitousness of voting (through rating, ranking, and recommending) as “participation” online. Another is what Web guru Jacok Neilsen calls the ruthlessness of users in moving rapidly through web sites, skimming rather than carefully reading content and impatiently seeking something to do quickly before they move on. Neither of these behaviors well serves those who would participate effectively in rulemaking. For this reason, Rulemaking 2.0 systems must be consciously engaged in culture creation, a challenging undertaking that requires simultaneously using, and fighting, the methods and expectations of the Web

    A Technical Roadmap for Autonomy for Marine Future Vertical Lift (FVL)

    Get PDF
    NPS NRP Executive SummaryThe Marines desire to leverage automation in their next Future Vertical Lift (FVL) platform, meaning they must define the human-FVL teaming interactions. The FVL will operate in a wide spectrum of flight regimes, from remotely piloted, to fully manned, to mostly automatic, and in combinations of the above. This broadened operating approach necessitates that understanding the various human machine teaming interdependent interactions across this diverse operating spectrum be completely delineated. NPS is well positioned to assist. Three approaches are considered: Use Co-active Design, since it is a rigorous engineering process that captures these interactions and interdependencies, develops workflows, and identifies resilient paths for human machine teaming using interdependence analysis (IA); define an FVL 'Living Lab' (LL) that the FVL program management office (PMO) could use to explore technical and concept tradeoffs; establish the cost/benefit relationships of these approaches; and design approaches to developing trust within this operating framework. The topic sponsor desires these techniques so as to create a PMO that decreases the speed at which technical tradeoffs can be identified and made.HQMC Aviation (AVN)This research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.

    A Technical Roadmap for Autonomy for Marine Future Vertical Lift (FVL)

    Get PDF
    NPS NRP Project PosterThe Marines desire to leverage automation in their next Future Vertical Lift (FVL) platform, meaning they must define the human-FVL teaming interactions. The FVL will operate in a wide spectrum of flight regimes, from remotely piloted, to fully manned, to mostly automatic, and in combinations of the above. This broadened operating approach necessitates that understanding the various human machine teaming interdependent interactions across this diverse operating spectrum be completely delineated. NPS is well positioned to assist. Three approaches are considered: Use Co-active Design, since it is a rigorous engineering process that captures these interactions and interdependencies, develops workflows, and identifies resilient paths for human machine teaming using interdependence analysis (IA); define an FVL 'Living Lab' (LL) that the FVL program management office (PMO) could use to explore technical and concept tradeoffs; establish the cost/benefit relationships of these approaches; and design approaches to developing trust within this operating framework. The topic sponsor desires these techniques so as to create a PMO that decreases the speed at which technical tradeoffs can be identified and made.HQMC Aviation (AVN)This research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.

    Non-peptidic antagonists of the CGRP receptor, BIBN4096BS and MK-0974, interact with the calcitonin receptor-like receptor via methionine-42 and RAMP1 via tryptophan-74

    Get PDF
    The receptor for calcitonin gene-related peptide (CGRP) has been the target for the development of novel small molecule antagonists for the treatment of migraine. Two such antagonists, BIBN4096BS and MK-0974, have shown great promise in clinical trials and hence a deeper understanding of the mechanism of their interaction with the receptor is now required. The structure of the CGRP receptor is unusual since it is comprised of a hetero-oligomeric complex between the calcitonin receptor-like receptor (CRL) and an accessory protein (RAMP1). Both the CLR and RAMP1 components have extracellular domains which interact with each other and together form part of the peptide-binding site. It seems likely that the antagonist binding site will also be located on the extracellular domains and indeed Trp-74 of RAMP1 has been shown to form part of the binding site for BIBN4096BS. However, despite a chimeric study demonstrating the role of the N-terminal domain of CLR in antagonist binding, no specific residues have been identified. Here we carry out a mutagenic screen of the extreme N-terminal domain of CLR (residues 23-63) and identify a mutant, Met-42-Ala, which displays 48-fold lower affinity for BIBN4096BS and almost 900-fold lower affinity for MK-0974. In addition, we confirm that the Trp-74-Lys mutation at human RAMP1 reduces BIBN4096BS affinity by over 300-fold and show for the first time a similar effect for MK-0974 affinity. The data suggest that the non-peptide antagonists occupy a binding site close to the interface of the N-terminal domains of CLR and RAMP1

    Exchange Field Induced Magnetoresistance in Colossal Magnetoresistance Manganites

    Full text link
    The effect of an exchange field on electrical transport in thin films of metallic ferromagnetic manganites has been investigated. The exchange field was induced both by direct exchange coupling in a ferromagnet/antiferromagnet multilayer and by indirect exchange interaction in a ferromagnet/paramagnet superlattice. The electrical resistance of the manganite layers was found to be determined by the absolute value of the vector sum of the effective exchange field and the external magnetic field.Comment: 5 pages, 4 figure

    Lithium-sulfur battery diagnostics through distribution of relaxation times analysis

    Get PDF
    Electrochemical impedance spectroscopy (EIS) is widely used in battery analysis as it is simple to implement and non-destructive. However, the data provided is a global representation of all electrochemical processes within the cell and much useful information is ambiguous or inaccessible when using traditional analysis techniques. This is a major challenge when EIS is used to analyse systems with complex cell chemistries, like lithium-sulfur (Li-S), one of the strongest candidates to supersede conventional Li-ion batteries. Here we demonstrate the application of distribution of relaxation times (DRT) analysis for quantitative deconvolution of EIS spectra from Li-S batteries, revealing the contributions of (eight) distinct electrode processes to the total cell polarisation. The DRT profile is shown to be strongly dependent on cell state-of-charge, offering a route to automated and on-board analysis of Li-S cells
    • …
    corecore