286 research outputs found

    Fundamental Limits of "Ankylography" due to Dimensional Deficiency

    Full text link
    Single-shot diffractive imaging of truly 3D structures suffers from a dimensional deficiency and does not scale. The applicability of "ankylography" is limited to objects that are small-sized in at least one dimension or that are essentially 2D otherwise.Comment: 2 pages, no figur

    Unscrambling Light Automatically on a Photonic Chip

    Get PDF
    Light beams can get mixed by transmission through a scattering system like a multimode channel. Separating beams of the same wavelength and polarization would appear to be very hard. Although the information carried by the beams is not fundamentally lost, its recovery requires a coherent interferometric reconstruction of the original signals, which have been scrambled among the modes of the system. In principle, a reconfigurable mesh of 2×2 interferometers could perform the necessary unitary mathematical operation.1 In practice, however, use of such photonic meshes—the size of which scales up quadratically with the number of modes— has been hindered by the need for complex, time-consuming procedures for calibration, control and configuration. Setting up and stabilizing a complex network of interferometers can be challenging, especially for interferometers buried inside the mesh. In work this year, we constructed a silicon photonics integrated mesh that can self-configure automatically to unscramble arbitrarily mixed optical beams, without any advance knowledge of the scattering system.2 Our architecture integrates six thermally controlled Mach-Zehnder interferometers that are sequentially and automatically adjusted, without calculations, to simultaneously reconstruct, separate (with a residual crosstalk of less than –20 dB), and sort out four optical beams that have been completely mixed in a multimode waveguide. By keying each signal with a different pilot tone, built-in transparent detectors3 monitor the evolution of each mode along the mesh, allowing tuning and adaptive individual feedback control of each interferometer with a simple, progressive algorithm.4 The entire mesh, controlled by custom-designed electronics, resets itself automatically after the mode mixing is significantly perturbed, can completely reconfigure on a time scale of a few seconds, and can track modes undergoing time-varying mixing on a time scale of a few hundred milliseconds. Our calibration and control strategy enables scalability to larger meshes (that is, to higher number of modes) without substantially increasing control complexity. Further, the principle of a self-configuring, self-resetting mesh can be extended to different mesh topologies to implement nonunitary linear operations4 and emerging programmable photonic processors,5 for applications in fields such as telecommunications, imaging, sensing, secrecy and quantum information processing. This work demonstrates that, despite the apparent challenges of undoing complicated scattering and interferometric mixing of optical beams, self-configuring and self-stabilizing optics systems can automatically unscramble light in real time

    Power monitoring in a feedforward photonic network using two output detectors

    Get PDF
    Programmable feedforward photonic meshes of Mach-Zehnder interferometers are computational optical circuits that have many classical and quantum computing applications including machine learning, sensing, and telecommunications. Such devices can form the basis of energy-efficient photonic neural networks, which solve complex tasks using photonics-accelerated matrix multiplication on a chip, and which may require calibration and training mechanisms. Such training can benefit from internal optical power monitoring and physical gradient measurement for optimizing controllable phase shifts to maximize some task merit function. Here, we design and experimentally verify a new architecture capable of power monitoring any waveguide segment in a feedforward photonic circuit. Our scheme is experimentally realized by modulating phase shifters in a 6 x 6 triangular mesh silicon photonic chip, which can non-invasively (i.e., without any internal "power taps ") resolve optical powers in a 3 x 3 triangular mesh based on response measurements in only two output detectors. We measure roughly 3% average error over 1000 trials in the presence of systematic manufacturing and environmental drift errors and verify scalability of our procedure to more modes via simulation

    Multipurpose silicon photonics signal processor core

    Full text link
    [EN] Integrated photonics changes the scaling laws of information and communication systems offering architectural choices that combine photonics with electronics to optimize performance, power, footprint, and cost. Application-specific photonic integrated circuits, where particular circuits/chips are designed to optimally perform particular functionalities, require a considerable number of design and fabrication iterations leading to long development times. A different approach inspired by electronic Field Programmable Gate Arrays is the programmable photonic processor, where a common hardware implemented by a two-dimensional photonic waveguide mesh realizes different functionalities through programming. Here, we report the demonstration of such reconfigurable waveguide mesh in silicon. We demonstrate over 20 different functionalities with a simple seven hexagonal cell structure, which can be applied to different fields including communications, chemical and biomedical sensing, signal processing, multiprocessor networks, and quantum information systems. Our work is an important step toward this paradigm.J.C. acknowledges funding from the ERC Advanced Grant ERC-ADG-2016-741415 UMWP-Chip, I.G. acknowledges the funding through the Spanish MINECO Ramon y Cajal program. D.P. acknowledges financial support from the UPV through the FPI predoctoral funding scheme. D.J.T. acknowledges funding from the Royal Society for his University Research Fellowship.Pérez-López, D.; Gasulla Mestre, I.; Crudgington, L.; Thomson, DJ.; Khokhar, AZ.; Li, K.; Cao, W.... (2017). Multipurpose silicon photonics signal processor core. Nature Communications. 8(1925):1-9. https://doi.org/10.1038/s41467-017-00714-1S1981925Doerr, C. R. & Okamoto, K. Advances in silica planar lightwave circuits. J. Lightw. Technol. 24, 4763–4789 (2006).Coldren, L. A. et al. High performance InP-based photonic ICs—A tutorial. J. Lightw. Technol 29, 554–570 (2011).Soref, R. The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).Bogaerts, W. Design challenges in silicon photonics. IEEE J. Sel. Top. Quantum Electron. 20, 8202008 (2014).Bogaerts, W. et al. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J. Lightw. Technol. 23, 401–412 (2005).Smit, M. K. et al. An introduction to InP-based generic integration technology. Semicond. Sci. Technol. 29, 083001 (2014).Leinse, A. et al. TriPleX waveguide platform: low-loss technology over a wide wavelength range. Proc. SPIE 8767, 87670E (2013).Kish, F. et al. From visible light-emitting diodes to large-scale III–V photonic integrated circuits. Proc. IEEE 101, 2255–2270 (2013).Heck, M. J. R. et al. Hybrid silicon photonic integrated circuit technology. IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).Sacher, W. et al. Multilayer silicon nitride-on-silicon integrated photonic platforms and devices. J. Lightw. Technol. 33, 901–910 (2015).Asghari, M. Silicon photonics: A low cost integration platform for datacom and telecom applications. In OFC/NFOEC 2008 – 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference 1–10 (San Diego, USA, 2008).Melati, D. et al. Integrated all-optical MIMO demultiplexer for mode- and wavelength-division-multiplexed transmission. Opt. Lett. 42, 342–345 (2017).Waterhouse, R. & Novak, D. Realizing 5G: microwave photonics for 5G mobile wireless systems. IEEE Microw. Mag. 16, 84–92 (2015).Marpaung, D. et al. Integrated microwave photonics. Laser Photon. Rev. 7, 506–538 (2013).Iezekiel, S., Burla, M., Klamkin, J., Marpaung, D. & Capmany, J. RF engineering meets optoelectronics: Progress in integrated microwave photonics. IEEE Microw. Mag. 16, 28–45 (2015).Technology focus on microwave photonics. Nat. Photon. 5, 723 (2011).Ghelfi, P. et al. A fully photonics-based coherent radar system. Nature 507, 341–345 (2014).Heideman, R. G. TriPleX™-based integrated optical ring resonators for lab-ona-chip-and environmental detection. IEEE J. Sel. Top. Quantum Electron. 18, 1583–1596 (2012).Estevez, M. C., Alvarez, M. & Lechuga, L. Integrated optical devices for lab-on-a-chip biosensing applications. Laser Photon. Rev. 6, 463–487 (2012).Almeida, V. R., Barrios, C. A., Panepucci, R. & Lipson, M. All-optical control of light on a silicon chip. Nature 431, 1081–1084 (2004).Norberg, E. J., Guzzon, R. S., Parker, J. S., Johansson, L. A. & Coldren, L. A. Programmable photonic microwave filters monolithically integrated in InP/InGaAsP. J. Lightw. Technol. 29, 1611–1619 (2011).Wang, J. et al. Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip. Nat. Commun. 6, 5957 (2015).Hill, M. T. et al. A fast low power optical memory based on coupled micro-ring lasers. Nature 432, 206–209 (2004).Slavík, R. et al. Photonic temporal integrator for all-optical computing. Opt. Express 16, 18202–18214 (2008).Sun, C. et al. A monolithically-integrated chip-to-chip optical link in bulk CMOS. IEEE J. Solid-State Circ. 50, 828–844 (2015).Sun, C. et al. Single-chip microprocessor that communicates directly using light. Nature 528, 534–538 (2015).Assefa, S. et al. in Optical Fibre Communication Conference OMM6, https://www.osapublishing.org/abstract.cfm?uri=OFC-2011-OMM6 (Optical Society of America, 2011).Peruzzo, A. et al. Multimode quantum interference of photons in multiport integrated devices. Nat. Commun. 2, 224 (2011).Bonneau, D. et al. Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits. N. J. Phys. 14, 045003 (2012).Metcalf, B. J. et al. Multiphoton quantum interference in a multiport integrated photonic device. Nat. Commun. 4, 1356 (2013).Muñoz, P. et al. in 16th International Conference on Transparent Optical Networks (ICTON), 1–4 (Graz, 2014).Ribeiro, A. et al. Demonstration of a 4×4-port universal linear circuit. Optica 3, 1348–1357 (2016).Liu, W. et al. A fully reconfigurable photonic integrated signal processor. Nat. Photon 10, 190–195 (2016).Graydon, O. Birth of the programmable optical chip. Nat. Photon 10, 1 (2016).Pérez, D., Gasulla, I. & Capmany, J. Software-defined reconfigurable microwave photonics processor. Opt. Express 23, 14640–14654 (2015).Miller, D. A. B. Self-configuring universal linear optical component. Photon. Res. 1, 1–15 (2013).Miller, D. A. B. Self-aligning universal beam coupler. Opt. Express 21, 6360–6370 (2013).Clements, W. R. et al. Optimal design for universal multiport interferometers. Optica 3, 1460–1465 (2016).Zhuang, L., Roeloffzen, C. G. H., Hoekman, M., Boller, K.-J. & Lowery, A. J. Programmable photonic signal processor chip for radiofrequency applications. Optica 2, 854–859 (2015).Capmany, J., Gasulla, I. & Pérez, D. Microwave photonics: The programmable processor. Nat. Photon. 10, 6–8 (2016).Pérez, D., Gasulla., Capmany, J. & Soref, R. A. Reconfigurable lattice mesh designs for programmable photonic processors. Opt. Express 24, 12093–12106 (2016).Madsen, C. K. & Zhao, J. H. Optical Filter Design and Analysis: A Signal Processing Approach. 1st edn. (Wiley, 1999).Jinguji, K. Synthesis of coherent two-port lattice-form optical delay-line circuit. J. Lightw. Technol. 13, 73–82 (1995).Jinguji, K. Synthesis of coherent two-port Optical delay-line circuit with ring waveguides. J. Lightw. Technol. 14, 1882–1898 (1996).Madsen, C. K. General IIR optical filter design for WDM applications using all-pass filters. J. Lightw. Technol. 18, 860–868 (2000).Burla, M. et al. On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing. Opt. Express 19, 21475–21484 (2011).Yariv, A. et al. Coupled resonator optical waveguides: a proposal and analysis. Opt. Lett. 24, 711–713 (1999).Hebner, J. E. et al. Distributed and localized feedback in microresonator sequences for linear and nonlinear optics. J. Opt. Soc. Am. B. 21, 1665–1673 (2004).Fandiño, J. S. et al. A monolithic integrated photonic microwave filter. Nat. Photon. 11, 124–129 (2017).Miller, D. A. B. All linear optical devices are mode converters. Opt. Express 20, 23985–23993 (2012).Reck, M. et al. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58–61 (1994).Carolan, J. et al. Universal linear optics. Science 349, 711 (2015).Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information. 1st edn. (Cambridge University Press, 2001).Miller, D. A. B. Perfect optics with imperfect components. Optica 2, 747–750 (2015).Grillanda, S. et al. Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics. Optica 1, 129–136 (2014)

    On-chip CMOS-compatible all-optical integrator

    Get PDF
    One reason for using photonic devices is their speed—much faster than electronic circuits—but there are many challenges in integrating the two technologies. Ferrera et al. construct a CMOS-compatible monolithic optical waveform integrator, a key building block for photonic circuits

    Nanotechnology and molecular cytogenetics: the future has not yet arrived

    Get PDF
    Quantum dots (QDs) are a novel class of inorganic fluorochromes composed of nanometer-scale crystals made of a semiconductor material. They are resistant to photo-bleaching, have narrow excitation and emission wavelengths that can be controlled by particle size and thus have the potential for multiplexing experiments. Given the remarkable optical properties that quantum dots possess, they have been proposed as an ideal material for use in molecular cytogenetics, specifically the technique of fluorescent in situ hybridisation (FISH). In this review, we provide an account of the current QD-FISH literature, and speculate as to why QDs are not yet optimised for FISH in their current form

    Modal beam splitter:Determination of the transversal components of an electromagnetic light field

    Get PDF
    The transversal profile of beams can always be defined as a superposition of orthogonal fields, such as optical eigenmodes. Here, we describe a generic method to separate the individual components in a laser beam and map each mode onto its designated detector with low crosstalk. We demonstrate this with the decomposition into Laguerre-Gaussian beams and introduce a distribution over the integer numbers corresponding to the discrete orbital and radial momentum components of the light field. The method is based on determining an eigenmask filter transforming the incident optical eigenmodes to position eigenmodes enabling the detection of the state of the light field using single detectors while minimizing cross talk with respect to the set of filter masks considered.UK Engineering and Physical Sciences Research Council [EP/J01771X/1]This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    The programmable processor

    Full text link
    [EN] Reconfigurable optical chips made from 2D meshes of connected waveguides could pave the way for programmable, general purpose microwave photonics processors.Capmany Francoy, J.; Gasulla Mestre, I.; Pérez-López, D. (2016). The programmable processor. Nature Photonics. 10:6-8. doi:10.1038/nphoton.2015.254S6810Waterhouse, R. & Novak, D. IEEE Microwave Mag. 16, 84–92 (2015).Skubic, B., Bottari, G., Rostami, A., Cavaliere, F. & Ölen, P. IEEE J. Lightwave Technol. 33, 1084–1091 (2015).Nature Photonics Technology Focus http://www.nature.com/nphoton/journal/v5/n12/techfocus/index.html (2011).Marpaung, D. et al. Lasers Phot. Rev. 7, 506–538 (2013).Pérez, D., Gasulla, I. & Capmany, J. Opt. Express 23, 14640–14654 (2015).Zhuang, L. et al. Optica 2, 854–859 (2015).Smit, M. et al. Semicond. Sci. Technol. 28, 083001 (2014).Guan, B. B. et al. IEEE J. Sel. Top. Quantum Electron. 20, 359–368 (2014).Wang, J. et al. Nature Commun. 6, 5957 (2015).Miller, D. A. B. Optica 2, 747–750 (2015)

    Self-Configuring Silicon-Photonic Receiver for Multimode Free Space Channels

    Get PDF
    A self-configuring mesh of silicon Mach-Zehnder Interferometers is employed to receive two spatially overlapped orthogonal beams modulated at 10 Gbit/s. These beams, sharing the same wavelength and state of polarization, are separated with more than 30 dB isolation, and sorted out with no signal degradation

    Filtering of Defects in Semipolar (11−22) GaN Using 2-Steps Lateral Epitaxial Overgrowth

    Get PDF
    Good-quality (11−22) semipolar GaN sample was obtained using epitaxial lateral overgrowth. The growth conditions were chosen to enhance the growth rate along the [0001] inclined direction. Thus, the coalescence boundaries stop the propagation of basal stacking faults. The faults filtering and the improvement of the crystalline quality were attested by transmission electron microscopy and low temperature photoluminescence. The temperature dependence of the luminescence polarization under normal incidence was also studied
    corecore