842 research outputs found

    Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 3. Single-fluid-phase flow

    Get PDF
    Abstract This work is the third in a series of papers on the thermodynamically constrained averaging theory (TCAT) approach to modeling flow and transport phenomena in multiscale porous medium systems. Building upon the general TCAT framework and the mathematical foundation presented in previous works in this series, we demonstrate the TCAT approach for the case of single-fluid-phase flow. The formulated model is based upon conservation equations for mass, momentum, and energy and a general entropy inequality constraint, which is developed to guide model closure. A specific example of a closed model is derived under limiting assumptions using a linearization approach and these results are compared and contrasted with the traditional single-phase-flow model. Potential extensions to this work are discussed. Specific advancements in this work beyond previous averaging theory approaches to single-phase flow include use of macroscale thermodynamics that is averaged from the microscale, the use of derived equilibrium conditions to guide a flux–force pair approach to simplification, use of a general Lagrange multiplier approach to connect conservation equation constraints to the entropy inequality, and a focus on producing complete, closed models that are solvable

    Convergence of iterative split-operator approaches for approximating nonlinear reactive transport problems

    Get PDF
    Abstract Numerical solutions to nonlinear reactive solute transport problems (NRTPs) are often computed using split-operator (SO) approaches, which separate the transport and reaction processes. This uncoupling introduces an additional source of numerical error, known as the splitting error. The iterative split-operator (ISO) algorithm removes the splitting error through iteration. Although the ISO algorithm is often used, there has been very little analysis of its convergence behavior. This work uses theoretical analysis and numerical experiments to investigate the convergence rate of the ISO approach for solving NRTPs. We show that under certain assumptions regarding smoothness, the convergence rate of the ISO algorithm applied NRTPs is O(Δ ). We demonstrate that the theoretical convergence rate can be achieved in practice if the numerical solution of the transport and reaction steps are carried out with sufficient accuracy. We also show that accurate estimation of the lagged operator in each step is crucial to obtaining the theoretical convergence rate

    An evaluation of solution algorithms and numerical approximation methods for modeling an ion exchange process

    Get PDF
    The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward-difference-formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications

    On the consistency of scale among experiments, theory, and simulation

    Get PDF
    As a tool for addressing problems of scale, we consider an evolving approach known as the thermodynamically constrained averaging theory (TCAT), which has broad applicability to hydrology. We consider the case of modeling of two-fluid-phase flow in porous media, and we focus on issues of scale as they relate to various measures of pressure, capillary pressure, and state equations needed to produce solvable models. We apply TCAT to perform physics-based data assimilation to understand how the internal behavior influences the macroscale state of two-fluid porous medium systems. A microfluidic experimental method and a lattice Boltzmann simulation method are used to examine a key deficiency associated with standard approaches. In a hydrologic process such as evaporation, the water content will ultimately be reduced below the irreducible wetting-phase saturation determined from experiments. This is problematic since the derived closure relationships cannot predict the associated capillary pressures for these states. We demonstrate that the irreducible wetting-phase saturation is an artifact of the experimental design, caused by the fact that the boundary pressure difference does not approximate the true capillary pressure. Using averaging methods, we compute the true capillary pressure for fluid configurations at and below the irreducible wetting-phase saturation. Results of our analysis include a state function for the capillary pressure expressed as a function of fluid saturation and interfacial area

    Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 4. Species transport fundamentals

    Get PDF
    This work is the fourth in a series of papers on the thermodynamically constrained averaging theory (TCAT) approach for modeling flow and transport phenomena in multiscale porous medium systems. The general TCAT framework and the mathematical foundation presented in previous works are built upon by formulating macroscale models for conservation of mass, momentum, and energy, and the balance of entropy for a species in a phase volume, interface, and common curve. In addition, classical irreversible thermodynamic relations for species in entities are averaged from the microscale to the macroscale. Finally, we comment on alternative approaches that can be used to connect species and entity conservation equations to a constrained system entropy inequality, which is a key component of the TCAT approach. The formulations detailed in this work can be built upon to develop models for species transport and reactions in a variety of multiphase systems

    Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 5. Single-fluid-phase transport

    Get PDF
    This work is the fifth in a series of papers on the thermodynamically constrained averaging theory (TCAT) approach for modeling flow and transport phenomena in multiscale porous medium systems. The general TCAT framework and the mathematical foundation presented in previous works are used to develop models that describe species transport and single-fluid-phase flow through a porous medium system in varying physical regimes. Classical irreversible thermodynamics formulations for species in fluids, solids, and interfaces are developed. Two different approaches are presented, one that makes use of a momentum equation for each entity along with constitutive relations for species diffusion and dispersion, and a second approach that makes use of a momentum equation for each species in an entity. The alternative models are developed by relying upon different approaches to constrain an entropy inequality using mass, momentum, and energy conservation equations. The resultant constrained entropy inequality is simplified and used to guide the development of closed models. Specific instances of dilute and non-dilute systems are examined and compared to alternative formulation approaches

    TCAT analysis of capillary pressure in non-equilibrium, two-fluid-phase, porous medium systems

    Get PDF
    Standard models of flow of two immiscible fluids in a porous medium make use of an expression for the dependence of capillary pressure on the saturation of a fluid phase. Data to support the mathematical expression is most often obtained through a sequence of equilibrium experiments. In addition to such expressions being hysteretic, recent experimental and theoretical studies have suggested that the equilibrium functional forms obtained may be inadequate for modeling dynamic systems. This situation has led to efforts to express relaxation of a system to an equilibrium capillary pressure in relation to the rate of change of saturation. Here, based on insights gained from the thermodynamically constrained averaging theory (TCAT) we propose that dynamic processes are related to changes in interfacial area between phases as well as saturation. A more complete formulation of capillary pressure dynamics is presented leading to an equation that is suitable for experimental study

    Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 7. Single-phase megascale flow models

    Get PDF
    This work is the seventh in a series that introduces and employs the thermodynamically constrained averaging theory (TCAT) for modeling flow and transport in multiscale porous medium systems. This paper expands the previous analyses in the series by developing models at a scale where spatial variations within the system are not considered. Thus the time variation of variables averaged over the entire system is modeled in relation to fluxes at the boundary of the system. This implementation of TCAT makes use of conservation equations for mass, momentum, and energy as well as an entropy balance. Additionally, classical irreversible thermodynamics is assumed to hold at the microscale and is averaged to the megascale, or system scale. The fact that the local equilibrium assumption does not apply at the megascale points to the importance of obtaining closure relations that account for the large-scale manifestation of small-scale variations. Example applications built on this foundation are suggested to stimulate future work
    • …
    corecore