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Abstract
Standard models of flow of two immiscible fluids in a porous medium make use of an expression
for the dependence of capillary pressure on the saturation of a fluid phase. Data to support the
mathematical expression is most often obtained through a sequence of equilibrium experiments. In
addition to such expressions being hysteretic, recent experimental and theoretical studies have
suggested that the equilibrium functional forms obtained may be inadequate for modeling dynamic
systems. This situation has led to efforts to express relaxation of a system to an equilibrium
capillary pressure in relation to the rate of change of saturation. Here, based on insights gained
from the thermodynamically constrained averaging theory (TCAT) we propose that dynamic
processes are related to changes in interfacial area between phases as well as saturation. A more
complete formulation of capillary pressure dynamics is presented leading to an equation that is
suitable for experimental study.
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1 Introduction
When modeling flow of two immiscible fluids in porous media, the capillary pressure
between the fluids is typically modeled as a function of the saturation of one of the fluids
according to pc = f(sw). This capillary pressure function is also set equal to the pressure in
the non-wetting phase minus the pressure in the wetting phase. This approach suffers from
two major shortcomings.

First, the capillary pressure, although measured at equilibrium, is not a unique function of
saturation. At the same saturation, capillary pressure is found to be higher following a
drainage event than following an imbibition event. All values between the high and low
equilibrium capillary pressure at a particular saturation can be reached as equilibrium values
by creatively using sequences of wetting and drying steps. This situation suggests that
capillary pressure may be a function of other variables in addition to saturation [7, 16]. In
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fact, this should not be surprising. At the microscale, the capillary pressure is dependent
upon the properties of an interface and is equal to the interfacial tension multiplied by the
interfacial curvature. This functional dependence is unique. Thus, suggesting that the
averaged capillary pressure is a function only of saturation implies that saturation is a
surrogate for curvature. Depending on how a fluid is distributed in the pore space, its surface
area may take on different forms and curvatures. Thus rather than concluding that the
macroscale capillary function is intrinsically hysteretic, it is reasonable to consider that the
functional dependence is incomplete when cast in terms of fluid saturations alone. As a first
step toward reducing hysteresis, one can obtain expressions for capillary pressure as a
function of interfacial area between fluids as well as saturation [4, 18, 19].

The second shortcoming relates not to the functional form of the equilibrium capillary
pressure relationship but to setting it equal to the pressure difference between phases.
Because the capillary pressure is a property of an interface, it relates to the difference in
pressure at the interfaces at equilibrium. Although the error is likely small in most cases, the
distinction between a pressure averaged over a phase and averaged over a fluid-fluid
interface is typically ignored. Furthermore, for a dynamic system, capillary pressure is not
equal to a difference in fluid-phase pressures. During a redistribution of phases in a region,
saturation, interfacial curvature, interfacial tension, and pressures will all be changing. The
requirement that an interface thermodynamic property be equal to a difference in properties
of adjacent phases seems unreasonable. The difference in phase pressures is sometimes
referred to as a “dynamic capillary pressure” [3, 6, 17]. However, this is a misnomer as a
dynamic capillary pressure should refer to a transient value of an interface property, such as
capillary pressure and/or curvature. For example, the expression “dynamic capillary
pressure” has been employed more appropriately to describe relations that are proportional
to the interfacial tension [5, 23].

Because capillary pressure is equal to the pressure difference between phases only at
equilibrium, efforts have been made to develop equations that account for system dynamics.
The first attempts to account for this disequilibrium seem to have been in the 1970’s [1, 21].
As described in Barenblatt et al. [2], one approach to accounting for the disequilibrium is to
make use of a transient effective saturation. Stauffer [21] postulated that the disequilibrium
is proportional to the rate of change of saturation. The difference between an observed pc

and an equilibrium thermodynamic form of this function has also been hypothesized to be
proportional to the rate of change of saturation [13]. A more complex analysis based on
rational thermodynamics postulated to hold at the macroscale has also led to a similar
relation [10].

Despite these advances in modeling the dynamics of capillarity, the models are still lacking.
Efforts to obtain values for the coefficient that appears in dynamic models have shown a
wide range of variability [11, 15, 20, 22]. One reason for variability in coefficients is that
they are being used to account for some physics that are otherwise overlooked in the
problem formulation. In the present instance, it seems likely that relaxation to an equilibrium
capillary pressure expression would involve both saturation adjustments and redistribution
of fluid within the medium. This redistribution could involve reshaping of interfaces (and
thus alteration of the capillary pressure of the interface) as well as formation and destruction
of interfaces. These processes can occur at constant pressure, but the current formulations
would only allow for disequilibrium due to changing saturation.

This unsatisfactory situation is due, at least in part, to the use of a postulated rational
thermodynamic formulation at the macroscale. Such a formulation is useful in allowing for
dependence on an expanded set of variables to be employed. However, this approach
overlooks subscale variations in thermodynamic variables such as interfacial area density.
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However, the thermodynamically constrained averaging theory (TCAT) offers a means to
develop an improved dynamic expression. TCAT involves averaging established microscale
thermodynamic principles to the macroscale. In doing so, it inherently assures consistency
between microscale and macroscale forms. Additionally, terms arise naturally that account
for microscale variations in macroscale quantities.

Here, we will review the expression that arises in the full TCAT formulation of two-fluid-
phase flow. We will then work with this expression to develop expressions for dynamics in
the capillary pressure equation. We note that this formulation allows for relaxation to
equilibrium based on both saturation changes and changes in interfacial area density. The
functional forms generated can be studied experimentally or through highly resolved
microscale simulations to obtain values or functional forms for the coefficients that appear
in the closure relations that are derived.

2 Entropy Inequality Force-Flux Pair
A full TCAT analysis has been performed for two-fluid-phase flow in porous media [12]. As
part of this analysis a term arises in the entropy inequality that hints at a useful and desired

force-flux form. This expression is denoted here as  with

(1)

where Tη is the actual term that appears in the entropy inequality and  is the macroscale
temperature of the wn interface obtained using microscale entropy per area of the interface
used as a weighting function in averaging it from the microscale. The microscale terms
inside the averaging operator are beautifully arranged into a force-flux form. This is the term
that gives rise to dynamic aspects of capillary pressure. However, converting the microscale
form to a macroscale force-flux pair is not straightforward. Here, we will examine this term
in detail with the objective of analyzing existing formulations for capillary pressure, and we
will also provide an improved formulation.

We note that a full formulation would require consideration of other force-flux types of
expressions to account for cross-coupling of phenomena. Here we will not make use of these
couplings as they are thought to be of lesser importance than the terms that appear in Eqn
(1). As insights grow, it may be deemed appropriate to make use of these other forces that
impact relaxation of capillary pressure toward equilibrium.

3 Definitions
For convenience, let us first define some of the macroscale quantities that will appear in the
subsequent discussions. First denote as Awn one of the microscale quantities that appears in
Eqn (1) according to

(2)

This quantity is averaged over the wn interface so that we obtain the macroscale quantity:

(3)
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Similarly, we can define the macroscale quantity Bwn as:

(4)

The microscale curvature of the interface is denoted as Jw where:

(5)

so that:

(6)

Then the macroscale average of Bwn is

(7)

The macroscale average of the curvature is defined as:

(8)

Although microscale quantities Awn and Bwn are directly related as in Eqn (6), a
corresponding macroscale relation between  and  will only exist necessarily when Jw
is constant within the averaging volume. We use Jwc to denote the constant value of
microscale curvature in this situation where

(9)

when Jw is a constant. Thus, when the microscale curvature is constant:

(10)

At equilibrium, Eqn (9) will apply. This relation may also apply in other situations, for
example in the case of spherical gas bubbles expanding in a liquid phase.

For shorthand convenience, we will use the designation

(11)

to indicate the microscale pressure difference between the wetting and non-wetting phases
as modified due to the mass contained in the interface between the phases. The macroscale
counterpart of this quantity is:
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(12)

where  is the microscale pressure of the w(n) phase averaged over the wn interface
and  is the wn interfacial density weighted average of the normal to the wn interface
oriented to be positive outward from the w phase. Making use of the notational
conveniences, we may rewrite Eqn (1) in three equivalent alternative forms:

(13)

or

(14)

or

(15)

Note that the first two forms involve products of factors that all go to zero at equilibrium.
Thus, these are in force-flux forms at the microscale. However, Eqn (15) is not in this form.
Thus, it is more difficult to see how to make use of Eqn (15) in determining macroscale
closure relations for the dynamic evolution of pressure.

One additional term that arises involves the average of the difference between the
microscale and macroscale curvature multiplied by Awn, which is denoted as  according
to:

(16)

which may be integrated to:

(17)

The quantity  equals zero at equilibrium and also under dynamic conditions when
.

With various macroscale quantities defined, we now perform some manipulations aimed at
examining the possibility of rearranging Eqn (1), or its equivalent forms of Eqns (13)–(15)
to obtain macroscale force-flux pairs. As will be seen, this task cannot be accomplished
solely in terms of the macroscale variables thus far defined.
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4 Analysis Based on Awn

For this analysis, we start with Eqn (13). We add and subtract macroscale terms to obtain:

(18)

The first term may be integrated directly since the macroscale quantity may be removed
from the averaging operator. This calculation gives:

(19)

For convenience, we will write this as the leading term plus an error term, , such that:

(20)

where:

(21)

Alternatively, we can rearrange this error expression to:

(22)

In both of these forms of the error term, quantities that go to zero at equilibrium are
contained in parentheses and multiply Awn. As demonstrated by Eqn (20), the force-flux

form in terms of macroscale quantities cannot be achieved unless the term  is properly
accounted for.

5 Analysis Based on Bwn

For this assessment, we also start with Eqn (13) for convenience. Multiply the factors
together to obtain the expanded expression:

(23)

Then addition and subtraction of the term  yields:

(24)

Eqn (24) may be factored to:
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(25)

or:

(26)

Now addition and subtraction of the quantity  yields:

(27)

The first term may be integrated to provide:

(28)

where:

(29)

To prepare this error to be compared with , we first rearrange this expression to:

(30)

and then to:

(31)

We note that  will be equal to zero at equilibrium since both Awn and the factors in
parentheses in this equation will be zero at equilibrium. Furthermore, Eqn (28) indicates that

 must be properly accounted for to obtain a macroscale force-flux form.

6 Comparison of the Error Terms

Eqns (20) and (28) would be macroscale force-flux pairs if  and , respectively, were
zero or were themselves macroscale force flux pairs. However, neither of these
circumstances will necessarily be the case. Comparison of Eqns (22) and (31) reveals that
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 and  differ only by the scale of the curvature that multiplies the second term in
parentheses. Therefore, we can subtract these two error terms to obtain:

(32)

The integral expression can be evaluated exactly making use of definition Eqn (16) to
obtain:

(33)

7 Approximations
To this point, none of the equations and identities developed involve any approximations.

However, the five variables , and  have not been specified in terms of
physical macroscale quantities. To be able to proceed toward useful expressions for the
system dynamics involving capillary pressure, we need to evaluate these terms. Exact
expressions are not attainable in general. However, under conditions that are commonly
encountered in porous medium flows, approximations with minimal error are achievable.
We will now develop some approximations that will prove to be helpful. To be clear, in
contrast to the derivation that has preceded, these approximations may be subjected to
improvement based on new insights or information. We believe, however, that the forms to
be proposed are quite workable and useful, and are certainly improvements compared to
currently used formulas for the analysis of the dynamics of capillary pressure evolution.

The need to obtain expressions for  and  in the study of the evolution of interfacial
areas has led to some work to obtain these in [8]. Neither quantity can be evaluated exactly,
but some reasonable approximations have been obtained. These expressions are based on the
exploitation of the averaging theorems as applied to volumes, surfaces, and curves.

It has been shown [8] that if one considers any motion of the solid-phase surface to be
independent of the fluid phase it contacts, the expression for Awn is:

(34)

where ε is the porosity, sw is the saturation of the w phase,  is the fraction of solid surface
in contact with the w phase, and the material derivative moving with the average velocity of
the solid phase is given by:

(35)

When the solid-phase dynamics are very slow in comparison to the redistribution of the
fluids in the pores, as is usually the case, Eqn (34) may be simplified to:
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(36)

Eqn (36) is exact for the case of a non-deforming solid with time independent porosity.

The evaluation of  is more difficult. For this term, we will make use of the [2, (3, 0), 0]
averaging theorems [9]. When applied to averaging of a constant, the time averaging
theorem T[2, (3, 0), 0] provides:

(37)

The averaging theorem for the gradient of a function, G[2, (3, 0), 0], provides the following
identity when the function is a constant:

(38)

The dot product of Eqn (38) with the macroscale solid-phase velocity gives:

(39)

Addition of Eqns (37) and (39) provides:

(40)

where the quantity on the left is . A useful rearrangement can be obtained by adding and
subtracting  to the second term on the right. With this step, and evaluating other integrals
as possible, we obtain:

(41)

where the rate of strain tensor for the solid is defined as:

(42)

 is the average of the normal velocity of the wn interface defined as:

(43)

and Gwn is the macroscale orientation tensor for the interface defined as:
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(44)

No approximations have been used in developing Eqn (41), but the last term is an integral
term that cannot be evaluated exactly. This integral accounts for the movement of the
common curve relative to the average solid-phase velocity.

The integral in Eqn (41) may be be approximated following [8] as:

(45)

where εss is the solid-phase surface per unit volume,  is the fraction of the solid-phase

surface in contact with the w phase,  is the average contact angle at the solid surface
between the ws and wn interfaces, and εwns is the common curve length per unit volume.
This approximate relation assumes that the contact angle average is decoupled from the
velocity of the common curve. This approximation inherently neglects the contributions of
the dynamic nature of the contact angle to the changes in εwn. For the case where the contact
angle within an averaging volume is approximately constant, the approximation is exact.
Substitution of Eqn (45) into Eqn (41) and cancellation of terms involving  yields
an approximate expression for  in the form:

(46)

When the solid-phase movement is insignificant, this expression reduces further to:

(47)

We can obtain an alternative approximation for  based on the identity of Eqn (17).
Arrangement of this equation yields:

(48)

Approximation of this expression proceeds first by substituting Eqn (34) to eliminate  so
that we have:

(49)

In [8], arguments were made that because  accounts for movement of the wn interfaces
when the microscale interfacial curvature within the averaging volume is not constant, it
may be approximated using a linear representation as:
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(50)

where k̂wn is a parameter that may depend on system variables, and  is the equilibrium
value of εwn. With this expression, Eqn (49) provides an alternative approximation to :

(51)

This form also may be simplified for the case where the solid is relatively immobile to the
expression:

(52)

Eqns (46) and (51) are alternative forms. Additionally, their simplified versions based on
relatively slow solid dynamics given in Eqns (47) and (52) may be used interchangeably.

Although we have expressions for averages of Awn and Bwn, we cannot make use of these
directly in Eqn (20) or Eqn (28) to obtain a force-flux pair in terms of macroscale physical

variables because of the presence of the residual terms  and . Thus to proceed with
this analysis, we must make suitable approximations for these residual terms under various
conditions. One way to do this is to consider the way in which experimental studies are
performed to determine capillary pressure-saturation relations [14].

8 Estimates of Residual Terms
The relationship between capillary pressure and fluid saturation is typically investigated
experimentally by making stepwise changes in the difference between the pressure of the
two fluids and allowing the system to equilibrate before quantifying the resultant fluid
saturations. The equilibration process involves rearrangement and reshaping of the interface
surfaces as well as flow of the phases into or out of the study cell. It is reasonable to
consider that the pressures of the phases and the interfacial tension are constant during the
equilibration process. Thus we will consider the case where:

(53)

and:

(54)

With these stipulations, Eqn (22) for  simplifies to:

(55)

This suggests further that the more general Eqn (22) be arranged to the following form:
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(56)

For purposes of subsequent discussion, we denote the error due to the difference in pressure
differences and surface tension differences between the microscale and macroscale,
respectively, as:

(57)

and:

(58)

Therefore Eqn (56) may be written as:

(59)

In this expression,  accounts for disequilibrium due to the distribution of the microscale

interfacial curvature within the REV,  accounts for the distribution of pressure

differences across an interface, and  accounts for the distribution of interfacial tension.
Thus whenever variability of either curvature, pressure difference, or interfacial tension
within the REV may be considered negligible, its corresponding residual term may be
neglected in the formulation.

For the special case under consideration here with the pressure difference and interfacial

tension distributions neglected, Eqn (31) for  reduces to:

(60)

Therefore rearrangement of Eqn (31) such that this portion of the error is the leading term
gives:

(61)

or, making use of definitions given in Eqns (57) and (58):

(62)

Based on these expressions, we will be neglecting  and . Typically studies of capillary
pressure relations are performed under conditions where the interfacial tension is a constant.
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This, of course, precludes the study of cases where the interfacial tension is evolving due to

coincident heat transfer or compositional changes of the phases. The neglect of  is
employed in consideration of the fact that pressure equilibration occurs at a faster rate than
the shape of the interface, which will reshape in response to the pressure in the phases.

Finally, in cases where Jw = Jwc, we obtain . This corresponds to a case where the
microscale interfacial curvature within the averaging region is a function of time, but has the
same value at any point on any interface segment as the system approaches equilibrium.

9 Expressions for Capillary Pressure Evolution

Eqn (59) is the general expression for . When disequilibrium due to a non-uniform
pressure difference profile and non-uniformity in surface tension are ignored, substitution
back into Eqn (20) provides the relation:

(63)

or after substitution of the approximation given by Eqn (50):

(64)

The coefficient k̂wn is a function of system variables. In an effort to obtain a force-flux form,

let us write this coefficient in terms of another variable  where:

(65)

Substitution of Eqn (65) into Eqn (64) and rearrangement gives:

(66)

This is a force-flux form that suggests the linear relation:

(67)

Then substitution of the approximation for  as given by Eqn (34) and for Pwn as given by
Eqn (12) yields:

(68)

For purposes of examining the most important processes, we can consider the solid-phase
motion to occur at a much longer time scale than the time scale over which fluid-fluid
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interface dynamics are operative. Also, consider the mass per area of the interface to be
negligible and denote the capillary pressure as:

(69)

Thus Eqn (68) becomes:

(70)

This is an extended form of the usual equation for relaxation of the capillary pressure to
equilibrium. Before discussing this relation further and considering special cases, we will
develop an alternative form based on Eqn (28).

Substitution of the expression in Eqn (62) into Eqn (28) retaining only the term accounting
for disequilibrium in curvature gives:

(71)

Substitution of Eqns (50) and (65) into Eqn (71) yields:

(72)

This relation can be rearranged into the force-flux form:

(73)

This suggests the linear relation:

(74)

Then substitution of Eqn (46) and introduction of the expression for pressure from Eqn (12)
into Eqn (74) gives:

(75)

This general form is simplified when the interfacial density per area is negligible and the
solid-phase dynamics can be ignored to obtain:
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(76)

Despite their different appearance, Eqns (70) and (76) must be equivalent forms since they
were developed under the same set of assumptions. Because of the equivalent definitions of

 given by Eqns (47) and (52), it is straightforward to rearrange Eqn (76) to show that:

(77)

Eqn (76) indicates that the relaxation to equilibrium can be monitored in terms of the
interfacial area density changes without inclusion of the rate of change of saturation.
However, this approach does require knowledge of the average of the normal component of
the microscale wn interface velocity, the rate of change of the ws interfacial area density,
and the contact angle. Eqn (70), though no more valid than Eqn (76), seems easier to work
with.

10 Discussion
The combination of terms that has resulted from the TCAT analysis, including averaging of
thermodynamic relations, has given rise to Eqn (20), which can be rewritten making use of
Eqns (12), (36), (59), and (69) as:

(78)

This equation is obtained with the following considerations:

• solid-phase dynamics are considered to be negligible in comparison to fluid-phase
dynamics related to capillary pressure transients;

• the phase pressures that impact capillary pressure dynamics are the averages of the
fluid-phase pressures over the fluid-fluid interfaces;

• capillary pressure at the macroscale is the average interfacial tension multiplied by
the average interfacial curvature;

•  relates to the dynamics of interface reconfiguration during dynamic changes of
capillary pressure and is zero when the microscale interfacial curvature is constant
and at equilibrium;

•
 relates to the dynamics of pressure equilibration within an averaging volume

and is zero when the difference between microscale fluid-phase pressures is
constant and at equilibrium; and

•
 relates to the dynamics of interfacial tension and is zero when the microscale

interfacial tension is constant and at equilibrium.

We can now examine some special cases, proceeding from the simplest to the more
complex.
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10.1 Equilibrium
The equilibrium statement of a capillary pressure relation arises directly from the microscale
rather than as a special case of Eqn (78). At any point on the interface, the microscale
capillary pressure, pc is defined as:

(79)

This definition is independent of the pressures in the fluids on each side of the interface. At
equilibrium, the statement of a balance of forces at a microscale point on the interface is:

(80)

Averaging of this expression over the interface then yields:

(81)

When the product of the density of the interface with the average vertical component of the
unit normal outward from the phase on the interface is negligible, the term accounting for a
pressure jump across the interface due to gravity can be neglected. Additionally, the
distinction between the fluid-phase pressure averaged over that phase or averaged over the
fluid-fluid interface is typically implicitly considered to be unimportant so that the
equilibrium capillary pressure is given as:

(82)

10.2 Simple Dynamic Model
The simple dynamic model is one that has appeared as the model for inclusion of capillary
dynamics. In fact, it is a simplified model of these dynamics. To obtain this model

proceeding from Eqn (78), one assumes that the pressure difference deviation term, , and

the interfacial tension deviation term, , are both negligible. Of particular note is the fact
that the term, , involving rearrangement of the interfacial curvature distribution is also
neglected. Additionally, the interfacial mass density term is considered small, and the
surface average pressures are replaced by the volume averaged pressures so that Eqn (78) is
reduced to:

(83)

Then, based on the idea that this is a force-flux form, the linearized expression is given as:

(84)

which may alternatively be obtained directly by manipulating Eqn (70).
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This equation indicates that the only dynamic process that gives rise to disequilibrium
between capillary pressure and the phase pressures is the rate of change of saturation. This is
an important observation on a number of scores. First, the formulation of Eqn (84) is
obtained directly when using a rational thermodynamics approach at the macroscale. Such
an approach inherently applies the concept of local equilibrium to an averaging volume such
that thermodynamic variables are ascribed at that scale. Thus, specification of capillary
pressure as a single variable at that scale overlooks the possibility of subscale variation of
this thermodynamic property. On the other hand, if one makes use of the TCAT approach
and averages microscale thermodynamics to the macroscale, the impact of subscale
variations is retained in the formulation. It can be eliminated through assumptions, but one is
forced to identify explicitly any assumptions and therefore consider them as sources of error
in matching data to theory.

Second, Eqn (84) does not account properly for disequilibrium due to the dynamics of
interfacial rearrangement at constant saturation. This process would seem to be important. In
fact, when running an experiment to measure the capillary pressure-saturation relation, some
relaxation of the system will occur even after the flow into the test cell has ceased. The
rearrangement of interfaces is an important process that is not accounted for in the
expression on the left side of Eqn (84). This means that experimental observations employed
to obtain the parameter, τ̂A, by measuring pressures and saturation as a function of time will
not provide particularly useful information if interface non-uniformities are important. The
problem is that based on Eqn (84), τ̂A will have to serve as the parameter that relates to the
influence of saturation changes on capillary dynamics and also will have to account for the
physical dynamics of interface reshaping as embodied in the term . Not surprisingly,
experimental studies have demonstrated great variability in τ̂A, which has not been
explained. Based on the present analysis, at least one component of this variability seems to
lie in the neglect of some of the system dynamics in formulating the equation for capillary
pressure evolution. When the curvature is uniform within the averaging volume, Eqn (84)
might seem to have greater utility in modeling the system. However, the presence of a solid
phase with its distribution of pore sizes and corners would seem to preclude the case of
uniform curvature in most instances.

10.3 More Complete Dynamic Model
With reference to Eqn (78), a complete model of capillary dynamics will result if all of the
terms are accounted for in the formulation. However, in most studies, the interfacial tension

is considered constant so that  as defined in Eqn (58) will be zero. Additionally, the
difference in pressure difference is expected to become uniform much more quickly than the

interfaces will reach a uniform profile. Therefore,  can be neglected relative to ,
except, perhaps, at very small times after a change in pressure. The challenge then becomes
to develop a form for  that both properly accounts for the physics and is useful in
obtaining a linearized force-flux form. In [8], the assumption was made that  is linearly
proportional to  where  and the coefficient of proportionality is
denoted as k̂wn. Whether, indeed, this relation is linear should be studied experimentally.
The state function  is an inversion of the function pc (sw, εwn)/γwn obtained under
equilibrium conditions. This observation carries the implication that if pc is not a function of
εwn, then the importance of  in describing capillary dynamics is negligible. The parameter
k̂wn must be a function of system properties, and the considerations for obtaining the force-
flux form have resulted in the form given by Eqn (65), indicate it can be expressed in terms
of the macroscale variables when contributions due to interface density are negligible as:
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(85)

For the case where the macroscale fluid pressure obtained as an average over the wn
interface is approximately equal to the average of the pressure over its phase, Eqn (70)
becomes:

(86)

This equation contains two parameters that must be obtained to model capillary dynamics.

Experimental studies may indicate an appropriate functional form for τ̂A and for . For the
expressions here, if they are treated as constants, we see that the approach of the interfacial
area densities to equilibrium will be slower at small saturations where pn − pw becomes
large. This seems reasonable from physical considerations of the reduced mobility of the
wetting phase at low saturations and also has implications for the measurements of the
equilibrium capillary pressure as a function of saturation and interfacial area. Measurements
made at low saturations will require a longer equilibration time than those made at larger
saturations.

Finally, based on Eqns (76) and (77) as well as the considerations in this section, the
alternative to Eqn (86) that can be used to model capillary dynamics is:

(87)

This equation can be compared to Eqn (86). Note that the right sides differ only by a minus
sign. Therefore, the expression in brackets in Eqn (87) scaled by −γwn/pc will equal the
expression in brackets in Eqn (86). This equality is consistent with the evolution equation
for εwn derived in [8].

11 Conclusion
The issue of capillary dynamics is one that has received increasing interest in modeling
multiphase fluid flow in porous media. Here, we have shown that based on thermodynamic
expressions averaged from the microscale to the macroscale, the relaxation of a system
toward the equilibrium equality between fluid pressure differences and capillary pressure is
dependent on both the rate of change of saturation and the rate of adjustment of the
interfacial area density to an equilibrium configuration. This latter feature does not emerge
in methods that propose system thermodynamics at the macroscale. Based on the TCAT
approach to thermodynamics, the elements and assumptions that are incorporated in a
dynamic expression for capillary pressure dynamics become explicit. The expectation that
interface rearrangement as well as saturation changes are important to the dynamics suggests
that efforts to parameterize an equation that does not account for this process neglects
important system physics.
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Abbreviations
Roman letters

A velocity of the normal fluid-fluid interface velocity relative to the macroscale solid-
phase velocity

B velocity of the normal fluid-fluid interface velocity relative to the macroscale solid-
phase velocity multiplied by the interfacial curvature

d rate of strain tensor

error or deviation terms relating to interface curvature dynamics

error or deviation terms relating to pressure dynamics

error or deviation terms relating to interfacial tension dynamics

G geometric orientation tensor

g gravity vector

Jw microscale surface curvature defined as the surface divergence of the outward
normal from phase w

Jwc denotes case when Jw is constant within an REV

macroscale surface curvature defined as the average over the wn interface of the
surface divergence of the outward normal from phase w

k̂wn generation rate coefficient for interfacial area

modified generation rate coefficient for interfacial area

nw outward normal vector from w phase on its boundary

= 〈nw〉Ωwn, Ωwn, ρwn, density weighted average of nw over the wn interface

nwn tangent vector to the wn surface and outward normal from the bounding common
curve wns

Pwn microscale function at the fluid-fluid interface equal to the pressure in the wetting
phase minus the pressure in the non-wetting phase plus the jump in pressure due to
the density of the material in the interface and gravity

Pwn average of Pwn over the wn interface

p fluid pressure

s saturation

Tη term appearing in the full entropy inequality

t time

v velocity

average of the normal component of the velocity of the wn interface over the wn
interface
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Greek letters

γ interfacial tension

ε porosity

εs volume fraction of the s phase

εss specific surface area of the s phase

εw volume fraction of the w phase

εwn area of the wn interface per averaging volume

εwns length of the wns common curve per averaging volume

θ temperature

ρ mass density

τ̂ coefficient in linearized force-flux relation for capillary pressure dynamics

average contact angle between the ws and wn interfaces

fraction of the solid surface in contact with the w phase

Ω spatial domain of the averaging volume

Ωwn domain of the wn interface within the averaging volume

Subscripts (for microscale) and superscripts (for macroscale)

A subscript associated with average of A

B subscript associated with average of B

c constant value

c used with p to indicate capillary pressure

eq equilibrium value

n non-wetting-phase qualifier

ns qualifier for interface formed by the intersection of the non-wetting and solid phases

s solid-phase qualifier

ss solid surface qualifier

w wetting-phase qualifier

wn qualifier for interface formed by the intersection of wetting and non-wetting phases

wns qualifier for common curve formed by the intersection of the wetting, non-wetting,
and solid phases

ws qualifier for interface formed by the intersection of wetting and solid phases

Symbols

∇′· surface divergence vector

– above a superscript refers to a density weighted macroscale average

= above a superscript refers to a uniquely defined macroscale average with
the definition provided in the text
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′ vector tangent to a surface

^ a parameter defined at the scale indicated by the subscript or superscript
on the parameter

〈Fα〉Ωb,Ωc,f

= , general average of a property associated with entity
α

〈Fα〉Ωα,Ωα

= , macroscale volume average of a α phase
(interface) property over the phase (interface)

〈Fα〉Ωα,Ωα,ρα

= , density weighted macroscale average of a
property of an entity over that entity

= 〈Fα〉Ωαβ,Ωαβ, average of a property of phase α over the αβ interface

Dᾱ/Dt material derivative, ∂/∂t + vᾱ·∇

Abbreviations

REV representative elementary volume for averaging from the microscale to the
macroscale

TCAT thermodynamically constrained averaging theory
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