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Abstract
This work is the seventh in a series that introduces and employs the thermodynamically constrained
averaging theory (TCAT) for modeling flow and transport in multiscale porous medium systems.
This paper expands the previous analyses in the series by developing models at a scale where spatial
variations within the system are not considered. Thus the time variation of variables averaged over
the entire system is modeled in relation to fluxes at the boundary of the system. This implementation
of TCAT makes use of conservation equations for mass, momentum, and energy as well as an entropy
balance. Additionally, classical irreversible thermodynamics is assumed to hold at the microscale
and is averaged to the megascale, or system scale. The fact that the local equilibrium assumption
does not apply at the megascale points to the importance of obtaining closure relations that account
for the large-scale manifestation of small-scale variations. Example applications built on this
foundation are suggested to stimulate future work.
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1 Introduction
Previous manuscripts in this series have laid out, and given examples of, the
thermodynamically constrained averaging theory (TCAT) for modeling flow and transport in
porous media. The objective of the TCAT approach is to increase the length scale of a model
from the pore scale in a rigorous fashion. The method integrates conservation equations and
thermodynamic relations over a region of interest to obtain revised equations that are posed at
the scale of interest. Thus far, we have provided an overview of the elements of the TCAT
approach [13], presented some mathematical identities that are useful when implementing
TCAT [23], applied the TCAT formalism to obtain the equations for single-fluid-phase flow
in porous media at a length scale on the order of tens to hundreds of pore diameters [14], laid
out the additional considerations of importance for multi-species systems in which dispersive
processes are operative [24], derived equations for species transport from the perspective of
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momentum equations for each phase and interface as well as the perspective of each species
in the phase and interface [16], and considered additional complexity that arises when modeling
multiple-fluid-phase flow due to the interactions between the phases and the deformable
interface between those phases [19]. In the applications to particular porous medium systems,
one consistent objective has been to obtain macroscale equations for which spatial as well as
temporal variation of the upscaled variables are considered. The equations developed were
closed by constitutive relations derived at the scale of the model.

In many cases, it is useful to model systems at reduced dimensionality. For example, flow in
groundwater aquifers may often be considered to be a two-dimensional problem modeled after
integration through the thickness of the flow domain [3,26]. Many instances of flow and
transport in a laboratory column are modeled as one-dimensional problems. Although one can
integrate the full three-dimensional equations developed using TCAT through one, two, or all
three spatial dimensions to reduce the dimensionality of the problem, this approach also
involves integration of approximate closure relations to produce lower dimensional
counterparts. An alternative is to formulate the lower-dimension equations directly at the larger
scale and then develop closure forms directly at the scale of interest. Theorems exist that allow
the formulation of a model at the microscale (i.e., the pore scale) or macroscale (i.e., a length
scale of tens to hundreds of pore diameters) in some dimensions while being fully integrated
over space in the remaining dimensions [18], i.e. formulated at the megascale in those
dimensions. Such a mixed approach has been employed in one analysis of open channel flow
which involved study of only a single phase [11]. Here we will examine full integration to the
megascale over all dimensions of conservation and thermodynamic equations for the case of
single-fluid-phase flow in porous media. This will be accomplished in the context of the
formalism prescribed for the TCAT approach as discussed previously [13,23]. We will make
use of averaging theorems that eliminate all spatial derivatives such that the models are posed
in terms of average variables representative of the entire system and in terms of fluxes at the
boundary of the region [18].

We note in passing that the region of integration may be some subsection of a full physical
region of interest. Then application of the approach to a collection of subsections and matching
the fluxes at the boundaries between subsections provides a model of the entire system. Thus
a domain may be modeled as a collection of uniform regions that are linked together.
Alternatively, a portion of a region modeled at the megascale can be linked to adjacent
subregions that are modeled at the macroscale, or even the microscale, as desired. Thus the
flexibility of being able to make use of different length scales in different subregions of space
presents an opportunity to optimize the study of a region based on computer resources, data
availability, and the features of the region to be modeled. Therefore, the approach of megascale
modeling within the TCAT framework has applications to a range of porous medium problems
as well as problems in which no solid phase is present.

In the present work, the elements of the TCAT approach will be reviewed insofar as they need
to be revisited to formulate the megascale flow and mass transport equations. The result of the
analysis will be closed equations that can be used to model single-fluid-phase flow in porous
media at the megascale.

2 System Description
The system under consideration in this work is a single-phase flow of a fluid, designated as
the w phase, in a deforming porous medium, where the solid is designated as the s phase, in
which species transport will be considered unimportant. Thus the equations obtained will be
used to model the dynamics of an entity, but we will not consider transport of species.
Separating the two phases is an interface, denoted as the ws interface, for which conservation
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and thermodynamic equations will also be developed. This system is the same as that
considered in Gray and Miller [14]. However, rather than integrating microscale equations over
an averaging volume with a length scale much larger than the pore scale but much smaller than
the system scale, integration will be performed over the entire domain. Thus spatial variability
is integrated out of the system, and the resulting conservation equations are ordinary differential
equations in time. The spatial integration of point equations to obtain global equations is not
particularly novel, but the use of a constrained entropy inequality to obtain constitutive forms
at the system scale, or megascale, is novel. The TCAT approach has yielded macroscale
equations that are rigorously defined and consistent with the microscale precursor conservation
equations and thermodynamic principles. These same qualities are sought in the current work
for the target models at the macroscale.

For the present study, the domain is denoted as Ω and its volume is . Within this domain is
a region occupied by a solid phase, Ωs with a volume of magnitude s; a region occupied by
the fluid phase, Ωw with a volume of magnitude w; and the interfacial region between the
solid and fluid phases, Ωws with an area of magnitude ws. These regions are referred to
generically as entities. Microscale conservation equations for mass, momentum, and energy
will be written for each entity. The external boundary of domain Ω is denoted as Γe. The part
of this boundary that intersects the w entity is Γwe and the part that intersects the s entity is
Γse. Furthermore, the interface between phases will intersect the boundary of Ω along a
collection of common curves designated Γwse. Although it is possible to work with species
based momentum and energy equations, this will not be considered in the present exposition.
Furthermore, microscale entropy balance equations will be employed for each entity along
with appropriate thermodynamic relations. All these equations will be integrated over the
corresponding entities to obtain megascale equations describing the system of interest. At this
larger scale, the entropy equations are combined to eliminate the terms describing exchanges
of entropy across the ws interface and to obtain the entropy balance for the system. The closed
models obtained will account for the dynamics of the two phases and the interface between the
phases.

Some shorthand notation will be used that makes the expression of the lengthier equations that
arise more compact. The set of entities is denoted as

(1)

where Ωι represents the domain of the ι entity within Ω, ℐ = {w, s, ws} is the index set of entity
qualifiers or identifiers, and w, s, and ws are specific qualifiers that indicate the fluid, or wetting,
phase, the solid phase, and the interfacial area between the fluid and solid phases. In instances
when we wish to work only with phase entities, we will denote the index set for the phases as
ℐP = {w, s}. The index set of the interfaces for this system consists of a single entity and is
denoted as ℐI = {ws}. With this convention, ℐ = ℐP ∪ ℐI.

A compact notation is also used to identify the connected set for an entity, that is the entities
that are in contact with a particular entity. The connected sets for the w, s, and ws entities are,
respectively, εcw = {Ωws}, εcs = {Ωws}, and εcws = {Ωw,Ωs} with corresponding connected
entity index sets ℐcw = {ws}, ℐcs = {ws}, and ℐcws = {w, s}.

In the approach employed here, the length scale of Ω is taken to be much larger than the pore
scale. Thus, we will define average quantities for the system. Because these averages apply to
the system as a whole, they will not have variability with respect to the length scale of the
averages. This distinguishes the current analysis from that in previous TCAT studies.
Nevertheless, the integrals of microscale properties that certainly may vary within the system
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domain will appear in the megascale equations; and accounting for these variations presents a
significant challenge in obtaining closed equations at the scale of interest. The final equations
will not contain explicit information about how the microscale entities are distributed within
Ω, but the constitutive results will necessarily rely on some degree of specification of the
distribution.

Though mathematically distinct from the previous TCAT studies, the approach employed here
follows the same route as used in earlier derivations [14,16,19,24]. The existence of these
earlier works allows the present contribution to concentrate on the new features incorporated
into TCAT analysis here. In general, the formalism requires mathematical theorems that
facilitate the change in scale; conservation equations, an entropy balance, and thermodynamic
relations at the larger scale; combination of these equations into an entropy inequality that is
constrained by the conservation laws; and development of closure relations for the conservation
equations from this inequality. These will be developed subsequently.

3 Averaging Operator and Integration Theorems
The theorems employed to integrate the conservation equations for the entities in this system
are the standard divergence and transport theorems in three and two dimensions. The primary
important feature is to designate the boundaries of each entity explicitly as divided between
those that are within the system (i.e., the interphase boundaries at the ws interface) and those
that occur at the exterior boundary of the system. In the following theorems, we will make use
of the definitions of integral operators as introduced previously [23] whereby

(2)

where i is a property to be averaged to the megascale, and the subscripts on the operator
correspond, respectively, to the domain of integration of the numerator, the domain of
integration of the denominator, and a weighting function applied to the integrands in the
definition of the averaging process. Omission of the third subscript on the averaging operator
implies a weighting of unity, W = 1.

Shorthand notation will be employed to indicate various special forms of the averages that
arise. The first of these is the average of the property of an entity over that entity, denoted with
a superscript such that

(3)

For cases when the mass density of the entity is used as a weighting function for averaging,
we denote the average with an overbar on the superscript such that

(4)

In some instances, we will average the property of an entity over the domain of another entity.
For example, the property of a phase entity can be averaged over the interface that bounds the
entity. This is designated by using a subscript to identity the entity to which the property belongs
and a superscript to identify the region of integration such as
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(5)

and

(6)

Because the objective of this work is to develop megascale models that are consistent with
established microscale conservation and balance equations and thermodynamics, theorems are
needed to support rigorously the change of scale that is needed. In previous TCAT papers where
equations were developed at the macroscale, the averaging region was fixed. Here, we integrate
over an entire region, which may change with time. Therefore, the theorems used to facilitate
the change in scale are integration forms rather than averaging forms. Because the microscale
entities of concern include phases, which are inherently three-dimensional objects, and an
interface, which is a two-dimensional object, theorems are needed to convert both three- and
two-dimensional operators to the megascale. Since the megascale models considered in this
work are megascale in all spatial dimensions, the class of theorems needed will convert
microscale differential operators to entirely megascale forms. The theorems needed have been
derived previously and we follow the naming convention established by Gray et al. [18]. The
theorems needed to convert three-dimensional differential operators to the three-dimensional
megascale form include the divergence theorem for a microscale phase quantity of the form

Theorem 1 (D[3,(0,0),3])

(7)

where the microscale spatial vector function fι is defined, continuous and differentiable in
Ωι and nι is a unit outward normal vector from the boundary of Ωι.

The gradient theorem for a microscale phase quantity is

Theorem 2 (G[3,(0,0),3])

(8)

where the microscale spatial scalar function fι is defined, continuous and differentiable in Ωι,
and nι is a unit outward normal vector from the boundary of Ωι.

The transport theorem for a microscale phase quantity is

Theorem 3 (T[3,(0,0),3])

(9)
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where fι is continuous in time, t, vws is the velocity vector for the ws interface, and vext is the
velocity of the exterior portion of the boundary of ι, Γιe.

Eqn (7)–Eqn (9) are presented in the specific context of integration over a region in a multiphase
porous medium, but they are the same as standard divergence and transport theorems found in
standard texts [e.g., 8,28]. For the single fluid system being considered here, no common curve
exists. Therefore, the divergence and transport theorems for the interface between the two
phases have boundaries only at the exterior of the system. The divergence theorem for the
surface is

Theorem 4 (D[2,(0,0),3])

(10)

where ι ∊ ℐP, fws is a continuous, differentiable spatial vector function defined in Ωws, ∇′· is
the surface divergence operator, Γwse is the curve on the system boundary where the Ωws
surface intersects the boundary, and nws is a unit vector at the boundary of the domain of
interest that is tangent to the ws surface and normal to the boundary curve. Note that nws is
not necessarily normal to Γe.

The gradient theorem for the surface is

Theorem 5 (G[2,(0,0),3])

(11)

where ι ∊ ℐP, fws is a continuous, differentiable spatial scalar function defined in Ωws, ∇′ is
the surface gradient operator, Γwse is the curve on the system boundary where the Ωws surface
intersects the boundary, and nws is a unit vector at the boundary of the domain of interest that
is tangent to the ws surface and normal to the boundary curve.

The transport theorem for a scalar microscale property of the interface, fws, is

Theorem 6 (T[2,(0,0),3])

(12)

where ι ∊ ℐP, fws is continuous in time and differentiable and ∂′/∂t is the partial time derivative
with surficial coordinates held constant.

These last three theorems are useful in working with surface conservation equations. Although
TCAT and earlier averaging methods for porous media have employed such conservations
equations [14,16,19,21] and employed surface theorems [12,18], the derivation of the theorems
remains an area of active interest [5,9]. These theorems will be applied to the microscale species
mass, momentum, and energy conservation equations as well as the entropy balance equation
and the thermodynamic expressions for the w and s phases and for the ws interface. The result
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will be the closed megascale relations that will be used in concert to produce closed megascale
models.

4 Conservation Equations
The TCAT formulation makes use of conservation equations at the scale of interest for the
derivation of closure relations. For the system under consideration here, the equations to be
used are conservation equations for mass, momentum, and energy for the fluid, solid, and fluid-
solid interface. They are obtained from their standard corresponding microscale forms by
integration making use of the theorems in §3. Although a more general system could be
examined that includes species transport, we will not consider that case here because the
primary objective is to demonstrate the TCAT approach at the megascale. In this section, we
will also develop the entropy balance equation that is employed in determining the constitutive
forms. The equations needed are derived in the following subsections.

4.1 Mass Conservation
For the fluid and solid phase entities, the microscale equation of mass conservation takes the
form

(13)

where ρι is the microscale mass density, and vι is the microscale velocity of the ι entity.

Integration of this equation over the domain of the entity and application of the divergence and
transport theorems, Eqn (7) and Eqn (9), yields the megascale form

(14)

where

(15)

(16)

 is the volume of the domain, ι is the mass of the ι entity in the domain Ω, and  is the
rate of mass exchange from the ws interface to the ι phase per unit volume per unit time.

Note that Eqn (14) does not contain any spatial derivatives. The first term is the rate of change
of total mass of entity ι in the domain Ω, the second term accounts for the flux of mass into the
entity ι due to mass exchange at the interface interior to the system, and the third term accounts
for the flux of mass out of the system at the exterior boundary.

The mass conservation for the ws interface is a generalization of the usual jump condition at a
surface of discontinuity in that mass is also allowed to accumulate in the interface. The general
microscale mass conservation equation is written as
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(17)

The first two terms account for the rate of change of mass at a location in the interface surface
and the net outward flux from that point in directions tangent to the surface, respectively. If
the interface is massless such that ρws = 0, each of these terms is zero. The third term is the net
flux from the adjacent phases to the interface. Eqn (17) is integrated over the entire interface
domain within the system, and Eqn (10) and Eqn (12) are applied to obtain

(18)

The integral in this expression accounts for flow out of the system of surface mass at the system
boundary.

4.2 Momentum Conservation
For a phase entity, the microscale momentum conservation equation is

(19)

where tι is the stress tensor and gι is the acceleration due to a body force. Often this acceleration
will be taken to be gravity, although the derivation of equations will allow for more general
contributions, such as Coriolis forces and electrical effects. Integration of Eqn (19) over the
phase entity and application of divergence theorem Eqn (7) and transport theorem Eqn (9)
yields the megascale equation

(20)

where

(21)

(22)

and  accounts for the transfer of momentum from the ws interface to the ι phase due to
stress and deviations from mean processes per unit volume per unit time.

For the ws interface, the microscale momentum conservation equation is
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(23)

When the interface is massless, the first two and the fourth terms in Eqn (23) will be zero. The
third term accounts for stress in the interface due to its interfacial tension. The last two terms,
involving properties of the adjacent phase entities evaluated at the interface, are the standard
terms for the jump condition at the interface. Application of divergence theorem Eqn (10) and
transport theorem Eqn (12) leads to the megascale momentum equation for the interface

(24)

4.3 Energy Conservation
For the phase entities, the microscale equation for conservation of total energy is

(25)

where Eι is the internal energy density, ψι is the acceleration potential, qι is the non-advective
heat flux density vector, and hι is the heat source density.

Eqn (25) may be integrated over the corresponding phase entity. After application of divergence
theorem Eqn (7) and transport theorem Eqn (9) and some rearrangement of the resulting
expression, we obtain the megascale total energy equation

(26)

where the averages with the double overbar are particular forms of quantities obtained using
the averaging operator such that

(27)

(28)

the megascale kinetic energy per unit mass due to microscale velocity fluctuations is
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(29)

and the term accounting for energy exchange at the interface due to heat exchange and deviation
terms is given by

(30)

The microscale equation for energy transport at the interface between phases allows for the
possibility of accumulation of energy at the interface. Thus, the equation that accounts for
interface energy properties along with the usual interface energy jump condition is

(31)

Integration of Eqn (31) over Ωws and then making use of divergence theorem Eqn (10) and
transport theorem Eqn (12) provides the megascale equation, which can be rearranged to the
form

(32)

where ws is area of the ws interface in Ω.

4.4 Entropy balance
The entropy balance equation expresses the rate of change of entropy due to transport as well
as generation due to dissipative processes. For a phase entity, the microscale entropy balance
is

(33)
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where ηι is the entropy density, φι is the entropy density flux vector, bι is the entropy source
density, and Λι is the entropy production rate density.

This equation can be integrated over its corresponding domain. Then, after using divergence
theorem Eqn (7) and transport theorem Eqn (9) and rearranging, one obtains

(34)

where

(35)

(36)

and the term accounting for entropy transport at the interior boundary of entity ι is defined as

(37)

The microscale entropy balance for the ws interface is

(38)

Eqn (38) is integrated over Ωws, and divergence theorem Eqn (10) and transport theorem Eqn
(12) are applied, yielding the megascale entropy balance for the interface

(39)

In the entity-based entropy equations, Eqn (34) and Eqn (39), the terms for non-advective
entropy transfer at the interfaces appear. These terms make analysis of each entity separately
infeasible. Also, the averaging process makes each of these entropy equations a relation for
only a portion of the system associated with a particular location. Therefore, the entropy balance
that is employed is the summation over all entities. This eliminates the non-advective fluxes
at the ws interface and provides
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(40)

This entropy inequality, constrained by the conservation equations and thermodynamic
relations, will be employed directly at the megascale to obtain constitutive closure relations.
However, before proceeding, it is necessary to obtain the megascale thermodynamic relations.

5 Thermodynamic Relations
The use of thermodynamic relations at the megascale is complicated by the fact that the local
equilibrium approximation may not apply for all variables at this scale. Thus, the direct
postulation of thermodynamic relations at the megascale runs the risk of being posed in terms
of variables that have no relationship to their well-understood microscale counterparts and,
perhaps, lack a clear physical meaning. This situation is not unlike what has been noted by
Maugin [22] in his discussion of variables used in rational thermodynamics.

Therefore in the TCAT approach, we start with microscale thermodynamic relations and
integrate them to the larger scale. This ensures that all large-scale variables are clearly and
uniquely defined in terms of their microscale antecedents. The local equilibrium approximation
need not be invoked at the megascale. Because the entities in this study are thermodynamically
different, being a fluid, a solid, and an interface, their thermodynamic formulations will be
presented separately. The derivation follows along the lines of Gray [10] and is based on
classical irreversible thermodynamics (CIT) at the microscale [7], but the divergence and
transport theorems provided above are employed instead of averaging theorems. Other
microscale thermodynamic formulations may be used as a basis for deriving the megascale
thermodynamic relations as well, which should be considered if the models produced based
upon CIT fail to describe a physical system of interest.

5.1 Fluid-phase thermodynamics
The microscale CIT expression for the energy of the w phase per unit volume is [1,4]

(41)

where θw is the temperature, µw is the chemical potential, and pw is the fluid pressure.
Integration of this equation over the w entity to obtain the megascale expression yields

(42)

where

(43)

The partial derivative of Eqn (41) with respect to time is

Gray and Miller Page 12

Adv Water Resour. Author manuscript; available in PMC 2010 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(44)

which can be rearranged to

(45)

This equation may be integrated using the transport theorem Eqn (9). Subsequent substitution
of Eqn (41) then provides

(46)

The gradient of Eqn (41) can be evaluated to obtain a form similar to Eqn (45)

(47)

This equation may be integrated over Ωw and simplified using gradient theorem Eqn (8) giving

(48)

The dot product of this equation with vw ̄ and addition with Eqn (46) yields

(49)

where the material derivative is defined as

(50)

By expressing w in this form, we obtain the condition that the terms accounting for non-local
equilibrium from a megascale perspective are the integral terms that go to zero when
temperature, chemical potential and the velocity differences are zero. The material derivative
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defined in Eqn (50) with respect to entity velocity vῑ may be transformed to a form relative to
the s entity by using the identity

(51)

where solid-phase referenced velocities are defined as

(52)

Application of Eqn (51) with ι replaced by w to the two material derivatives in Eqn (49) yields

(53)

Because the system under consideration is formulated at the megascale, .
The microscale Gibbs-Duhem equation for the w phase is

(54)

From Eqn (8), it follows that

(55)

Eqn (53)–Eqn (55) can be combined to write

(56)

5.2 Solid-phase thermodynamics
For a solid, the CIT expression for the internal energy makes use of the fact that the solid
particle movement can be tracked such that the energy of the s phase per unit volume is

(57)
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where σs is the Lagrangian stress tensor, s is the Green’s deformation tensor, js is the solid-
phase Jacobian, and : indicates a double dot product between the tensors σs and s. Integration
of Eqn (57) over Ωs yields the megascale expression for the internal energy

(58)

where

(59)

The partial derivative of Eqn (57) with respect to time is

(60)

Introduction of some macroscale variables allows this equation be rearranged to

(61)

Integration of Eqn (61) over Ωs, application of transport theorem Eqn (9), and substitution of
Eqn (57) then provides

(62)

The gradient of Eqn (57) can be evaluated to obtain a form similar to Eqn (61)

(63)

Integration of Eqn (63) over Ωs and use of gradient theorem Eqn (8) in light of Eqn (57) gives

(64)

Taking the dot product of Eqn (64) with vs ̄ and adding the result to Eqn (62) yields
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(65)

Following the approach in Gray and Schrefler [17], we can show that

(66)

where ∇Xx is the derivative of a microscale location on the solid phase with respect to its initial
location [8].

Substitution of this identity into Eqn (65) and minor rearrangement provides the megascale
thermodynamic expression for the solid phase

(67)

5.3 Interface thermodynamics
A surface is a two-dimensional entity and the stress in a surface is due to interfacial tension
effects. The microscale thermodynamic expression obtained from CIT for a surface is

(68)

where γws is the interfacial tension. Integration of this expression over Ωws within the megascale
volume yields

(69)
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The partial time derivative of Eqn (68) is taken while holding the surface coordinates constant
such that

(70)

or after introduction of macroscale variables

(71)

Integration of Eqn (71) over Ωws and use of transport theorem Eqn (12) and identity Eqn (68)
yields

(72)

The surface gradient of Eqn (68) can be evaluated to obtain a form similar to Eqn (71)

(73)

Integration of Eqn (73) over Ωws accompanied by use of the gradient theorem Eqn (11) and
substitution of Eqn (68) gives

(74)

The dot product of Eqn (74) with  and addition to Eqn (72) yields

(75)

Using the definition

(76)
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Eqn (75) may be restated as

(77)

However, spatial derivatives of megascale quantities are zero and the Gibbs-Duhem equation
provides

(78)

Therefore, Eqn (77) may be simplified to

(79)

6 Constrained Entropy Inequality
The next step in the development of the TCAT model is to employ the conservation equations
and the thermodynamic relations as constraints on the entropy inequality Eqn (40). The
constraint equations developed previously (i.e., Eqn (14), Eqn (18), Eqn (20), Eqn (24), Eqn
(26), Eqn (32), Eqn (49), Eqn (65), and Eqn (79)) may be employed to write the entropy
inequality as

(80)

where the coefficients  are Lagrange multipliers whose values will be
selected. Note that the quantities being added to the entropy inequality are all zero and thus
the expression for entropy generation provided by entropy inequality Eqn (40) is preserved.
The Lagrange multipliers are thus free parameters such that the generation term Λ is unaltered.
By selecting the multipliers judiciously, most of the time derivatives in the equation can be
eliminated so that the generation term takes on a form that is a collection of force-flux products
[7,20]. Because of the integration over the entire domain to the macroscale, the force-flux
relations are those for the entire domain plus those at the boundaries of the region. Those at
the boundaries must also be evaluated at the megascale. Thus the generation term is of the
general form

(81)
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where each of the independent driving forces, designated as a scalar F, vector F, or tensor ,
along with a subscript, is zero at equilibrium. Additionally, all the conjugate fluxes, designated
as a scalar by J, a vector by J, or a tensor by  will also be zero at equilibrium.

With this in mind, the multipliers that cancel the time derivatives arising in Eqn (80) are

(82)

(83)

and

(84)

Substitution of these values into Eqn (80) followed by algebraic rearrangement of expressions
and some cancellations of terms yields the constrained entropy inequality (CEI) in the form
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(85)
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This general form does not rely on any approximations or restrictions, except the selection of
the microscale form of the thermodynamic relation, CIT. This equation therefore can be used
as a general starting point for the analysis of a range of problems. We will consider a restricted
set here.

7 Simplified Equation
Eqn (85) can be simplified to obtain an expression useful for extracting closure relations for
certain cases. Here, we will impose one set of conditions that are not strongly restrictive and
thus does not eliminate a large number of important systems.

As the first condition, we will restrict interest to what is commonly called simple systems [8].
The non-advective heat flux appears as a microscale quantity integrated at the boundary. Thus,
we will invoke the condition

(86)

This condition indicates that the heat flux divided by the temperature is equal to the entropy
flux at the microscale, a condition that allows the entropy flux to be eliminated from the CEI.
Because the interface between the phases is two-dimensional, the non-advective fluxes qws
(and therefore φws) and tws only have components that are tangent to the interface. The energy
source term appears at the megascale and for a simple megascale system is related to the entropy
source according to

(87)

and

(88)

The portions of these terms involving material derivatives do not appear in the microscale
definition of a simple system [8]. By definition, at the microscale, the “average” values would
be the point value; and thus the differences between microscale and megascale values in the
material derivatives would be zero by definition.

Let us also consider the case where there is no mass exchange between entities such that

(89)
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When there is no mass exchange at the ws interface, the microscale condition also applies such
that

(90)

Also, let the interface be massless such that

(91)

and

(92)

Microscale non-advective fluxes in the interface normal to the interface are taken to be zero
so that

(93)

and

(94)

Eqn (86)–Eqn (94) can be used to reduce Eqn (85) to
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(95)

where the surface identity tensor is defined as

(96)

We will make use of microscale constitutive relations for the fluid and the interface stress
tensor. For the fluid let

(97)

For the interface, assume that the stress is fully accounted for by the interfacial tension such
that

(98)
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Since the system of interest is a porous medium, we will consider the case where the solid
velocity is very small and the solid behaves as a quasi-equilibrium system. Thus we make use
of the microscale constitutive relation for the solid phase

(99)

with the off-diagonal elements of this tensor being zero at the ws interface such that

(100)

Because the magnitude of the solid phase velocity is very small relative to other dynamic
motions, we will eliminate all integrals over Ωs containing vs − vs ̄ in Eqn (95). The velocities
of all entities are small so that terms involving the velocity squared can be considered to make
a negligible contribution to energy and to the entropy generation relative to other terms. Finally,
we will assume that the dynamics of the movement of the Ωws interface are so slow that the
equilibrium force balance identity can be applied at all times on the surface (i.e., a semi-
equilibrium approximation) with

(101)

relative to the other terms in Eqn (95).

Thus, the entropy inequality becomes

(102)
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The integrals over the various portions of the external boundaries of the system typically
involve products of microscale quantities. In fact, these products involve microscale forces and
fluxes. It is useful to rearrange these terms so that the integrals can be evaluated. This is
accomplished by making two significant, though exact, alterations to the system.

First, although the integrals are over the entire external boundary of an entity, these integrals
can conveniently be subdivided into portions of the area that can be more easily evaluated
separately. Then, integration over the external boundary of an entity is expressed as the sum
of the integrals over each section. With this employed as needed, Eqn (102) becomes

(103)

where

(104)

i is a general index, Γιei is a subset of the external boundary Γιe, and ℐΓιe is an index set that
includes indexes of all external boundary subsets for the external boundary of entity ι.

Second, we will add and subtract averages over the boundaries to these terms so that the product
of forces and fluxes can be written as a macroscale pair plus a pair that is still within the integral
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(105)

where

(106)

(107)

(108)

Gray and Miller Page 26

Adv Water Resour. Author manuscript; available in PMC 2010 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(109)

(110)

and wsei is the length of the ith segment of the external boundary of the ws entity. These
quantities are all averages over a portion of the external system boundary. For example,  is
the net (i.e., relative to the system boundary velocity) density weighted average outward normal
velocity of entity ι over segment i of the total external boundary that intersects entity ι.

Recall that the development of megascale equations is intended to be useful for systems where
smaller scale variations in system properties can be neglected. Consistent with that objective,
we can eliminate some of the terms in the preceding equation. We make the assumption that
the velocity of the external boundary is determined by the movement of the solid phase. Thus,
for purposes of evaluating the integrals, we will neglect the terms  as well

as terms involving . The outward flow of solid material at the boundary is also
zero so that . Also, we will neglect the deviation term involving non-advective heat

transfer that appears within integrals, . Finally, two of the terms involving τw
are arguably small in comparison to other tems in Eqn (105). The first is the term be integrated

over the boundary that multiplies the small velocity difference . Second, the
tangential component of the microscale fluid velocity is considered to be negligible on the
boundary so that this term may also be dropped. With all these observations implemented in
Eqn (105), the remaining entropy inequality is

(111)

This equation is in the flux-force form suggested by Eqn (81) with eight types of conjugate
pairs. The actual number of conjugate pairs depends on the number of sections of the surface
of the system over which integrations have been performed. In this implementation of the
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TCAT approach, there are conjugate scalar and vector pairs, but no tensor conjugate pairs. The
set of forces in Eqn (111) that go to zero at equilibrium is

(112)

8 Linearized Closure Relations
The TCAT approach leads to the development of an SEI, which in turn constrains the allowable
forms of closure relations needed to produce well-posed, solvable models. Such closure
relations are not unique in form, or even the order of the approximation. As a result, an infinite
number of closure relations exist for a given model. It is both reasonable and common practice
to start with a relatively simple set of closure relations and to increase the complexity of these
relations as needed to describe physical systems of concern. A natural place to start is with a
linear form of the closure relations. The most general linearization of the flux-force pairs is to
make each flux a linear function of the full set of forces. Here we will consider a somewhat
reduced, but nevertheless rather general, linear coupling. We will consider that there is coupling
involving the average velocity and the average frictional drag within the system. Other coupling
is assumed to be unimportant, although these assumptions can be examined further in the
context of a physical system. Thus the restrictions employed are:

• The average velocity of the solid phase is essentially equal to the average velocity of
the interface between the fluid and solid such that the force  and the conjugate
flux of this term is also approximately zero.

• The heat transferred into the system at the system boundary where the interface
intersects the boundary is negligible so that the heat flux at any boundary curve

Γwsei is restricted by  and its conjugate force is also
negligible.

• Each member of the set of boundary flow fluxes,  will depend on the conjugate
force at that location as well as the force vw̄ − vs ̄. This is expressed as

(113)

where  is a closure vector.

• The flux with conjugate force vw̄,s ̄ also depends on the forces conjugate to the
boundary flow fluxes, which is of the form

(114)

where  is a closure vector.

• Each of the non-advective heat flux terms for the phases at the boundary will depend
only on the conjugate force at that boundary. Therefore
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(115)

and

(116)

where k̂θ is a heat flux closure parameter.

• The non-advective heat flux terms within the system will depend only on the conjugate
force. This is stated as

(117)

and

(118)

where k̂Q is an inter-entity heat transfer closure parameter.

Note that if the system is isotropic, a linear dependence of a vector flux on a scalar force or of
a scalar flux on a vector force will not exist because the proportionality parameter is a vector.
No isotropic coefficient vector exists. For the megascale case, “isotropy” includes interaction
with boundary fluxes as well as the actual properties of the materials making up the porous
medium system. For a more general form, it is a small matter to include additional coupling
between flow induced by temperature differences or energy transport induced by high flow
rates. Closed equations may be obtained under the conditions and restrictions identified above.

9 Closed Conservation Equations
Closure relations may be implemented in the megascale conservation equations to provide a
set of equations that describes the system. It is important to realize that some approximations
will be made in this analysis consistent with the fact that the conservation equations are
integrated over the entire system such that variability of properties within the system are treated
only through average quantities. Such a description can be useful in many applications or in
some regions of interest where the variability of properties is not important to answering a
question of interest concerning the system. Here we will provide closed forms of the mass,
momentum, and energy conservation equations that can serve as a basis for megascale analysis.

9.1 Closed mass conservation equations
The mass conservation equation for the phases is given in Eqn (14). When there is no mass
exchange between phases, this simplifies to
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(119)

Making use of the definition of the outward volumetric flow per unit area given by Eqn (106)
and the stipulation of the constraint that the boundary of the system moves with the solid phase,
one can express this equation for the w and s phase, respectively, as

(120)

and

(121)

Eqn (121) indicates that the solid mass in the system does not change with time while Eqn
(120) expresses the change in mass of phase w as a function of the fluxes at the various locations
on the boundary where fluxes occur. There are two options for specifying these fluxes. In one
case, the flux might be specified directly, for example at a location where fluid is being added
or withdrawn at a specified rate. A second option would involve the imposition of the head at
the boundary so that the flow out would be due to a head gradient generated by the dynamics
of the system. For this type of boundary condition, we can make use of the linear closure relation
for  out defined in Eqn (113). With this expression implemented at some locations, a form
of mass conservation Eqn (120) that could be employed is

(122)

where ℐΓweυ is the set of locations where the velocity is specified and ℐΓweµ is the set of
locations where the potential is specified with ℐΓwe = ℐΓweυ ∪ ℐΓweµ. This distinction accounts
for the fact that with some systems, at some boundary locations fluxes will be employed while
at other locations the flux potential is used. The formulation is capable of handling this mix of
conditions. In this equation K̂wei is a megascale parameter that may depend on position on the
boundary of the system as well as time. This parameter may be interpreted as similar to a
hydraulic conductivity,  with

(123)

where l is a characteristic length such that the difference in potentials divided by this length
approximates the normal gradient in potential at the boundary and ∊wei is the porosity at the
boundary. The parameter  accounts for coupling at the boundary between an exit, or
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entrance, velocity and the average velocity within the system. The frictional loss term within
the fluid in Eqn (122) may be neglected since most of the losses are due to fluid-solid
interactions that account for the difference between chemical plus gravitational potential at the
boundary and the average of the potentials in the interior of the system. In that instance, the
mass conservation equation for the fluid may be simplified to

(124)

Since the interface is considered to be massless and no phase change occurs, mass conservation
Eqn (18) for the interface is trivial with all terms being zero.

9.2 Closed momentum conservation equations
The megascale momentum equation for the phases when no mass exchange is taking place
reduces from Eqn (20) to

(125)

The closure relation for this equation for the w phase is given by Eqn (114). Substitution into
Eqn (125) when ι = w then gives

(126)

The first term in this equation is the rate of change of w momentum. The second accounts for
resistance to fluid flow due to frictional interactions of the fluid with the solid. The integral
term accounts for momentum added or subtracted by flow across the system boundary, and the
summation term accounts for the addition of momentum due to work done at the boundary of
the system. Note that the integral term, in effect, involves the velocity squared.

It can be approximated as

(127)

where at each section of the boundary

(128)
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Substitution of Eqn (127) and Eqn (120) into Eqn (126) with the intrafluid frictional stress term
neglected then gives

(129)

When the rate of change of average velocity of the w phase and the advective momentum flux
at the boundary are small, the simplest form of the momentum equation is obtained as

(130)

To obtain the closed form of the solid phase momentum equation, we start with momentum
Eqn (24) for the interface which simplifies for the case of no mass exchange and a massless
interface to

(131)

Combination of this expression with Eqn (114) yields

(132)

Substitution into Eqn (125) for the solid phase, while making use of the fact that no solid phase
enters or leaves the system, then provides the momentum equation

(133)

This equation provides an expression for the response of the solid phase momentum to
gravitational forces, interaction with the fluid in the system, and forces applied at the boundary
of the system. For conditions under which the flow is described by Eqn (130) and the
acceleration of the solid phase is negligible, this equation may be simplified to a simple balance
of forces acting on the solid

(134)
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9.3 Closed energy conservation equations
The development of the closed energy equation for the w phase begins with energy conservation
Eqn (26) simplified to account for the fact that no phase change is being modeled. Additionally,

we will neglect the subscale kinetic energy term,  and assume that the only body force is
due to gravity so that the partial time derivative of the microscale gravitational potential is
zero. With these terms deleted and the time derivative of the kinetic energy expanded out using
the product rule, the energy equation for entity w is

(135)

Next substitute mass conservation Eqn (119) and momentum conservation Eqn (125) for the
w entity into this equation to eliminate the time derivatives of mass and momentum. Then
rearrange terms to obtain

(136)

Make use of the linearized force-flux relation of Eqn (117) to restate this equation as

(137)

Constitutive Eqn (114) is used to eliminate  from Eqn (137) to obtain, under conditions
where Eqn (130) holds
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(138)

Some additional rearrangement may be made involving the integral terms and using Eqn (97)
to obtain

(139)

Terms that are second order in velocity will now be eliminated in light of the porous medium
system being studied to obtain

(140)

The linearized closure relation based on Eqn (115) is then substituted into Eqn (140) at locations
where the temperature, rather than the heat flux, is specified at the boundary. This provides

(141)
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where ℐΓweq is the index set of locations on the w external boundary where the flux is specified,
ℐΓweθ is the index set of locations on the w external boundary where the temperature of the
w phase is specified, and ℐΓwe = ℐΓweq ∪ ℐΓweθ.

The integrals that remain in Eqn (141) contain some challenges. The first two are related to
the change in volume of the system in response to the pressure. The third integral involves
frictional effects at the boundary of the system and is typically small. The last term can be
managed by breaking the boundary into segments where flow is occurring and then using a
closure relation such as

(142)

where the macroscale quantities  are specified with an equation of state.

For the solid phase, the energy equation analogous to Eqn (136) may be obtained as

(143)

Substitution of Eqn (118) into Eqn (143) yields

(144)

where we have made use of the definition of the system such that the normal component of the
solid phase velocity at the boundary defines the velocity of the boundary. Substitution of the
closure expression for the non-advective heat flux at the system boundary at locations were
the temperature is known and leaving the heat flux explicitly where it is specified gives

(145)

where ℐΓseq is the index set of locations on the s external boundary where the flux is specified,
ℐΓseθ is the index set of locations on the s external boundary where the temperature of the s
phase is specified, and ℐΓse = ℐΓseq ∪ ℐΓseθ.
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10 Discussion
The purpose of this series of manuscripts on the TCAT approach is to lay the foundation for
rigorous model building for a variety of porous medium systems. The approach that has evolved
in this series to accomplish this goal is to present the components of the machinery needed to
formulate models and to use this machinery to create frameworks that support a hierarchy of
models. Thus our intent with these works is not to present solutions for a single problem, but
to establish a series of frameworks that can be applied to entire families of problems, albeit
with some additional effort. An important feature of this work is that the model formulation
process proceeds in a series of formal, well-defined intermediate steps that provide convenient
starting points for additional individual efforts without requiring the substantial foundational
efforts needed to derive starting points such as the CEI or the SEI.

Given the primary restrictions on the class of problem of concern in this work and the
applicability of CIT as an appropriate thermodynamic theory, the CEI that is derived is an exact
expression, which can be broadly applied to single-fluid-phase megascale problems in general.
The CEI is not strictly in the desired form of a set of forces and fluxes, which is needed to
guide model closure. Because of this, a series of approximations and restrictions are applied
to reduce the CEI to the SEI, which is in strictly force-flux form. The simplifications applied
are a reasonable starting point, but may not be the final word. Alternative sets of simplifications
to achieve force-flux forms can be explored starting from the CEI to produce alternative forms
of the SEI if such efforts are deemed necessary to describe a physical system of concern. It
should be noted that reducing the CEI to the SEI is much less effort than deriving the CEI,
which requires a substantial series of manipulations. The sort of manipulations required to
derive the CEI have been detailed in previous papers in this series [15,16].

The models considered in this work are megascopic in nature, by which we mean that a solution
is sought in terms of variables averaged over the entire spatial domain of the system. Because
of this, spatial variability within the domain is not resolved at the scale of the solution. It follows
then that the theorems applied to derive the conservation equations of concern transform the
spatial derivatives to boundary terms, and representing the boundary terms appropriately
becomes a central focus of the work.

As an example, and initial starting point for modeling megascale single-fluid-phase systems,
a set of linear closure relations are derived from the SEI. These closure relations are in turn
used to derive a set of closed conservation of mass, momentum, and energy equations for a
megascale system. These closed equations include model parameters that must be determined
for application to any specific physical problem, which is typical of any mechanistic model.
Because all quantities appearing in the final models are rigorously defined averages of
microscale precursors, the means exists to link models across scales and to investigate the
dependence of the resultant model parameters on the details of a sub-scale system. Multiscale
computation would be one way to approach this problem, while alternative analytical
approaches of linking megascale model parameters to microscale system properties are
possible under certain, more restrictive conditions. Future works building upon this
foundational work along these lines seems potentially fruitful. For example the theoretical
underpinnings of Darcy’s [6] foundational experimental work and data correlation can be
explored. This can be important in determining problem parameters and also extensions to
multiphase systems.

Megascale models are of most applicability when the spatial variations within the system are
sufficiently simple in form to result in meaningful megascopic model parameters of a
correspondingly simple form. When this is no longer the case, megascale models lose their
utility. One way in which megascale models may be used advantageously is to subdivide a
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system into a set of domains that can each be approximated with a megascopic model and
linked together at the boundaries. A second extended way to use megascopic models is to
separately treat a simple portion of a larger system with a megascopic model that is coupled
to a more highly resolved macroscale model for the more complex portions of the domain that
does represent spatial variability. An example of such a system is a highly dynamic unsaturated
porous medium zone, or a dynamic system such as a lake, coupled to a more slowly changing
saturated porous medium zone. These sorts of extensions are also potentially fruitful ways to
employ this foundational work in rigorous study of multiscale systems [e.g., those described
in 2,25,27].

11 Conclusions
Reduced dimensionality models are important tools for both preliminary analysis and as
component parts of larger, more complex models. Derivation of these megascale models poses
challenges that are identical to those faced in deriving macroscale models. In both cases, a
rigorous foundation requires an exact representation of the averaged variables of concern in
terms of the microscale precursors, constraints to ensure that the second law of thermodynamics
is enforced, and closure relations that represent sub-scale processes adequately at the larger
scale of concern. Corresponding parallels exist between the derivation of TCAT models at the
macroscale and at the megascale in concept, although the detailed components of the process
must be extended; these extensions were detailed in this work.

Conservation of mass, momentum, and energy and balance of entropy equations were derived
for a megascopic single-fluid-phase porous medium system starting from the microscale. These
equations do not include spatial derivatives, but they do include a set of boundary integral terms
that represent the net input of the conserved or balanced quantity of concern. These
conservation and balance equations are defined as precise averages of microscale quantities,
which allows for connection across scales.

Classical irreversible thermodynamics is used along with the megascale conservation and
balance equations to produce an augmented entropy inequality. A series of manipulations are
applied to produce a constrained entropy inequality (CEI) for the megascale single-fluid-phase
system of concern, which is an exact expression for the system of concern and the
thermodynamic theory chosen. The CEI is an important inequality that can serve as a starting
point for a variety of megascale models for single-fluid-phase systems of varying complexity.
Because the significant amount of effort required to derive this equation does not need to be
repeated, varying applications of this inequality are considered relatively straightforward.

Because the CEI is not strictly in force-flux form, a series of approximations are applied to
reduce this inequality to the simplified entropy inequality (SEI), which is necessarily
approximate in nature unlike the CEI. The approximations used to derive the SEI are clearly
summarized and the resultant SEI formulation is detailed. While perhaps not the final word,
the megascale SEI derived is still a rather general expression that may apply to many different
systems of varying complexity. A significant number of models can be derived based upon
this SEI and only if these models prove inadequate to describe a physical system of concern
would the SEI need to be revisited.

The SEI is used to guide the formulation of closure relations. A linear form of these closure
relations is detailed, which are deemed a reasonable first approximation but certainly neither
unique nor of high complexity. The closure relations are in turn used to produce a complete
set of closed equations for conservation of mass, momentum, and energy. These closed
equations can be applied to model a range of physical systems. Resolution of the relation
between the precise functional dependence of the megascale model parameters appearing in
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the closed models in relation to specific underlying microscale, or macroscale, systems is an
area of additional research deserving of attention using either analytical or numerical means.

In addition to purely megascopic models, the foundational work presented herein can be used
to produce megascale models that are coupled to other megascale models, or megascale models
that are coupled to macroscale models. The foundation laid in this work should enable such
applications in a relatively straightforward manner.

Notation
Roman letters

area, l2

b entropy source density

Green’s deformation tensor, ––

E internal energy density

ε the set of entities

ε conservation of energy equation, ml2/t3

εc connected set of entities

F scalar force for entropy generation

F vector force for entropy generation

tensor force for entropy generation

ℱ set of forces for entropy generation

f general scalar function

f general vector function

g acceleration vector due to an external force, such as gravity, l/t2

g scalar magnitude of gravitational acceleration, l/t2

h heat source density

identity tensor, – –

′ surface identity tensor, ––

ℐ index set of entities

ℐc index set of connected entities

ℐI index set of interface entities

ℐP index set of phase entities

ℐΓ index set of boundary subsets

J scalar flux for entropy generation

J vector flux for entropy generation

tensor flux for entropy generation

js solid-phase Jacobian, ––

K̂ megascale conductivity parameter

KE megascale kinetic energy per unit mass due to microscale velocity fluctuations, l2/t2
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K̂H megascale hydraulic conductivity parameter, l/t

k̂Q inter-entity heat transfer closure parameter

k̂θ heat flux closure parameter

length, l

l characteristic length, l

mass, m

ℳ conservation of mass equation, m/t

transfer of mass from the κ entity to the ι entity per unit volume per unit time, m/(tl3)

nι outward unit normal vector from the surface of a phase when ι ∈ ℐP and the unit
normal tangent to the surface and outward normal from the bounding curve when ι ∈
ℐI

general property

conservation of momentum equation, ml/t2

p fluid pressure, m/(lt2)

transfer of energy from the κ entity to the ι entity resulting from heat transfer and
deviation from mean processes per unit volume per unit time, m/(lt3)

q non-advective heat flux density vector

qout is the outward normal component of the heat flux vector for the ι entity evaluated on
the boundary of the domain

̂ resistance tensor

r̂υ closure vector

r̂µ closure vector

entropy balance equation, ml2/(t3T)

CIT-based thermodynamic equation for material derivative of internal energy

transfer of momentum from κ entity to the ι entity due to stress and deviation from
mean processes per unit volume per unit time, m/(l2t2)

t stress tensor

t time, t

volume, l3

0s initial volume of the solid phase, l3

v velocity, l/t

vext velocity of the exterior portion of the boundary of the ι entity, l/t

υout is the normal velocity of the ι entity relative to the normal velocity of the external
boundary evaluated at the external boundary, l/t

vῑ,s ̄ mass averaged velocity of the ι entity relative to the mass averaged velocity of the
solid phase, vw̄−vs ̄ , l/t

W weight function

X material coordinate position vector, l
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x position vector in the solid phase, l

Greek letters

Γ boundary of domain of interest

γ interfacial tension

ϵι measure of quantity of entity ι per macroscale volume

η entropy density

θ temperature

ι entity qualifier

Λ entropy production rate density

λ vector of Lagrange multipliers

λ Lagrange multiplier

µ chemical potential

ρ mass density

σ Lagrangian stress tensor for the solid phase

τ stress tensor

transfer of entropy from the κ entity to the ι entity per unit volume per unit time

φ entropy density flux vector

ψ acceleration potential (e.g., gravitational potential)

Ω spatial domain

Subscripts and superscripts

ε energy equation qualifier

e exterior of domain qualifier

i general index

j general index

k general index

ℳ mass equation qualifier

momentum equation qualifier

r residual portion of specified equation

s index that indicates a solid phase

sei ith location where the s phase intersects the system boundary

thermodynamic equation qualifier

w entity index corresponding to the wetting phase

wei ith location where the w phase intersects the system boundary

ws entity index corresponding to the wetting-solid interface
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wsei ith common line where the ws interface intersects the system boundary

ι entity qualifier

Other mathematical symbols

- closure of set (overline)

〈 〉 averaging operator

Dῑ/Dt material derivative

∂′/∂t partial derivative of a point on a potentially moving interface

∇′ microscale surficial del operator on an interface

∇(·)|_ spatial derivative of the thermodynamic function (·) taken with the quantities listed
following the vertical bar held constant

Abbreviations

ACIT averaged classical irreversible thermodynamics

AEI augmented entropy inequality

CEI constrained entropy inequality

CIT classical irreversible thermodynamics

EI entropy inequality

REV representative elementary volume

SEI simplified entropy inequality

TCAT thermodynamically constrained averaging theory
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