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Abstract. As a tool for addressing problems of scale, we con-
sider an evolving approach known as the thermodynamically
constrained averaging theory (TCAT), which has broad ap-
plicability to hydrology. We consider the case of modeling
of two-fluid-phase flow in porous media, and we focus on
issues of scale as they relate to various measures of pres-
sure, capillary pressure, and state equations needed to pro-
duce solvable models. We apply TCAT to perform physics-
based data assimilation to understand how the internal be-
havior influences the macroscale state of two-fluid porous
medium systems. A microfluidic experimental method and
a lattice Boltzmann simulation method are used to examine a
key deficiency associated with standard approaches. In a hy-
drologic process such as evaporation, the water content will
ultimately be reduced below the irreducible wetting-phase
saturation determined from experiments. This is problematic
since the derived closure relationships cannot predict the as-
sociated capillary pressures for these states. We demonstrate
that the irreducible wetting-phase saturation is an artifact of
the experimental design, caused by the fact that the bound-
ary pressure difference does not approximate the true capil-
lary pressure. Using averaging methods, we compute the true
capillary pressure for fluid configurations at and below the
irreducible wetting-phase saturation. Results of our analysis
include a state function for the capillary pressure expressed
as a function of fluid saturation and interfacial area.

1 Introduction

Hydrologic systems are typically investigated using some
combination of experimental, computational, and theoretical
approaches. Each of these classes of approaches has played a
central role in advancing knowledge. The years spanning the
career of Eric F. Wood have witnessed a remarkable devel-
opment in the ability to study experimentally the elements
that comprise the hydrologic universe. The subsurface is a
porous medium system that receives experimental attention
designed to identify the small-scale fluid distributions within
the solid matrix, intermediate-scale behavior through labo-
ratory study, and also the response of an aquifer to imposed
forces (e.g., Wildenschild and Sheppard, 2013; Dye et al.,
2015; Alizadeh and Piri, 2014; Knödel et al., 2007). Turbu-
lence in surface flows and its impact in rivers, estuaries, and
oceans for flow, sediment transport, and dissolved species
transport is examined using a broad range of experimental
techniques (e.g., Bradshaw, 1971; Chanson, 2009; D’Asaro,
2014; Bernard and Wallace, 2002). Atmospheric experiments
designed to support theoretical models of turbulence, typi-
cally using lidar systems, and to gain insight into turbulence
structures have also generated large quantities of data (Sathe
and Mann, 2013; Collins et al., 2015; Fuentes et al., 2014).
Other studies involve the examination of snowpack, deserti-
fication, and changes in land usage (Deems et al., 2013; Her-
mann and Sop, 2016; Lillesand et al., 2015; Nickerson et al.,
2011).
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Complementing the advancing ability of experimental
study is the development of simulation tools for various as-
pects of hydrologic systems that make use of advanced com-
puter technology (e.g., Miller et al., 1998, 2013; Flint et al.,
2013; Kauffeldt et al., 2016; Paiva et al., 2011; Dietrich et al.,
2013; Zhou and Li, 2011; Bauer et al., 2015; Dudhia, 2014).
These models of watersheds, rivers and estuaries, and subsur-
face regions usually make use of traditional equations with
the advances occurring through the ability of modern com-
puter architecture to handle larger problems using parallel
computing and more elegant, efficient graphical user inter-
faces.

A third element of advancing modeling of water resources
systems is the development of theory that accounts for phys-
ical processes. On one hand, forming theoretical advances
for mechanistic models based upon conservation equations
can be viewed as the standard challenges of accounting more
completely for conserved quantities and of developing clo-
sure relations for dissipative processes. However, the need
to pose closure relations at scales that are consistent with
those at which the problems have been formulated creates
a need for a variety of constitutive proposals. Furthermore,
consistency of models requires that equation formulations be
consistent across scales such that variables developed at a
smaller scale can inform the equations employed at a larger
scale. Overall, these considerations lead to identifying scale
and scaling behavior in both time and space as important
challenges in posing models (Wood, 1995; Wang et al., 2006;
Skøien et al., 2003; Pechlivanidis et al., 2011; Gleeson and
Paszkowski, 2014; Gentine et al., 2012; Blöschl, 2001).

In an era of unprecedented data generation, opportunities
to use multiscale averaging theory to develop physics-based
data assimilation strategies have never been more evident.
The challenge of performing meaningful theoretical, exper-
imental, and computational analyses is constrained by the
need to ensure that the length and timescales of quantities
arising in each approach can be related. The scales of experi-
mental data, variables appearing in equations, and computed
quantities must be the same if they are to be compared in any
meaningful way. As a prerequisite for this to happen, data
generated by any of the methods must be consistent across
the range of scales considered (Ly et al., 2013; Kauffeldt
et al., 2013).

While the desire for consistencies across scales and ap-
proaches is conceptually simple to understand, it has proven
to be a difficult practical objective to meet. The change in
scale of conservation and balance equations can be accom-
plished rather easily. The problem with applying these equa-
tions lies in the aforementioned need to average some in-
tensive variables, the requirement that closure conditions be
proposed at the larger scale, and the need to account for
the dynamics of new quantities that arise in the change of
scale. Without accounting for all of these items properly,
models are doomed to fail. An essential element in ensuring
success is the averaging of thermodynamic relations to the

larger scale (Gray and Miller, 2013). This provides linkage
of variables across scales and also ensures that all physical
processes are properly accounted for. For modeling rainfall–
runoff processes, Wood et al. (1988) proposed the use of a
representative elementary area as a portion of a watershed
over which averaging can occur to develop a model. This
idea was extended and applied by Blöschl et al. (1995). Sub-
sequently, Reggiani et al. (1998) proposed treating a hydro-
logic system as a collection of interconnected lumped ele-
ments. The lumping was accomplished by integration over
individual portions of the system with distinct properties,
e.g., aquifers, streams, channels. This effort did not include
integration of thermodynamic relations, and as a result did
not properly account for the impact of gravitational potential
in driving flow between system elements. An effort to ad-
dress this shortcoming by a somewhat ad hoc introduction of
gravitational forces (Reggiani et al., 1999) was only partially
successful. Averaging of thermodynamic relations to lumped
elements has since been presented (Gray and Miller, 2009).

Challenges in assuring consistency across scales have also
been confronted in the modeling of porous medium sys-
tems. Special challenges have been encountered for two-
fluid-phase flow, where upscaling leads to the introduction
of quantities such as specific interfacial area, which is the
area where two phases meet normalized by the volume of the
region, and specific common curve length, which is length of
a curve where three phases meet normalized by the volume
of the region. Modeling of multiscale porous medium sys-
tems must also employ thermodynamics that is scale consis-
tent and included naturally as a part of the process. Because
of the inability to overcome these challenges, most efforts to
model multiscale, multiphase porous medium systems do not
have thermodynamic constraints and full-scale consistency
that would be expected in mature models. The thermody-
namically constrained averaging theory (TCAT) approach is
relatively refined and provides means to model systems that
are inherently multiscale in nature and also to link disparate
length scales, while representing the essential physics natu-
rally and hierarchically with varying levels of sophistication.
However, realizing these scale-consistent attributes requires
new approaches, new equations of state, novel parameteriza-
tions, and, as with any new model, evaluation and validation.

2 Objectives

The overall goal of this work is to examine the impact of
phase connectivity on scale consistency for two-fluid-phase
porous medium systems. From the mathematical standpoint,
the microscale and macroscale must provide a consistent
view of the physics. In our approach, macroscale variables
(such as phase pressures and capillary pressure) are explicitly
defined in terms of microscale quantities to ensure that phys-
ical consistency is achieved. The resultant rigorous connec-
tion between the microscale and the macroscale can be ex-
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ploited to understand and characterize how phase connectiv-
ity influences key macroscale quantities. In other words, we
ensure consistency between information at small and large
scales by using precise mathematics to change the scale of
variables; and we also ensure that variables denoted as per-
taining to theory, experiment, or simulation are defined such
that they refer to quantities defined at the same scale and are
directly comparable. The specific objectives of this work are

– to formulate explicitly related microscale and
macroscale descriptions of state variables impor-
tant for traditional and evolving descriptions of
capillary pressure

– to determine state variables for capillary pressure us-
ing complementary experimental and computational ap-
proaches

– to compare a traditional state equation approximation
approach with a carefully formulated approach based in
multiscale TCAT theory

– to demonstrate the limitations of traditional state equa-
tion approaches for macroscale capillary pressure and

– to examine the uniqueness of alternative state equation
formulations for capillary pressure.

The objectives of this work are focused on a specific as-
pect of approaches commonly used to represent the behav-
ior of porous medium systems. The physical size of the
systems considered experimentally and computationally are
small and idealized compared to field-scale hydrologic sys-
tems that motivate this work and which hydrologists collec-
tively endeavor to better understand and describe quantita-
tively with higher fidelity than current approaches. Our hope
in examining these fundamental issues is to advance basic
understanding of hydrologic systems and to stimulate future
work that might allow such advancements to be reduced to
improved tools for practice in due course.

3 Background

Two spatial scales are of primary interest for the porous
medium problems of focus herein: the microscale, which is
often referred to as the pore scale; and the macroscale, which
is often referred to as the porous medium continuum scale.
At the microscale, the geometry of all phase distributions are
fully resolved in space and in time, which makes it possi-
ble to locate interfaces where two phases meet and common
curves where three phases meet. The equations governing
the conservation of mass, momentum, and energy, the bal-
ance of entropy, and equilibrium thermodynamic relations
are well established at the microscale. Microscale experi-
mental work and modeling are active areas of research be-
cause of their relevance to understanding operative processes

in complex porous medium systems that were previously im-
possible to observe. The macroscale is a scale for which a
point is associated with some averaged properties of an av-
eraging region comprising all phases, interfaces, and com-
mon curves present in the system. Notions such as volume
fraction and specific interfacial area arise when a system is
represented at the macroscale in terms of averaged measures
of the state of the system. These additional measures are
quantities that must be determined in the model solution pro-
cess. Because of historical limitations on both computational
and observational data, the macroscale has been the tradi-
tional scale at which models of natural porous media systems
have been formulated and solved. Closure relations at this
scale are needed to yield well-posed models. Traditionally,
these closure relations have been posited empirically and pa-
rameter estimation has been accomplished based upon rela-
tively simple laboratory experiments. In general, traditional
macroscale models, while the dominant class of model, suf-
fer from several limitations related to the way in which such
models are formulated and closed (Gray and Miller, 2014).
A precise coupling between these disparate length scales has
usually been ignored.

As efforts to model and link hydrologic elements in mod-
els advance, the ability to address scales effectively will
become essential. For porous media, methods such as av-
eraging, mixture theory, percolation theory, and homoge-
nization have been employed to transform governing sys-
tem equations from smaller to larger length scales (Hornung,
1997; Panfilov, 2000; Cushman, 1997). The goal of such ap-
proaches is to transform small-scale data to a larger scale
such that it can be used to inform models that have been ob-
tained by consistent transformation of conservation and bal-
ance equations across scales.

Averaging procedures have been used for analysis of
porous media for approximately 50 years (e.g., Bear, 1972;
Anderson and Jackson, 1967; Whitaker, 1986, 1999; Marle,
1967). The methods of averaging can be applied to single-
fluid-phase systems as well as to multiphase systems. Suc-
cess in the development of averaging equations for single-
fluid-phase porous media to obtain equations such as Darcy’s
law has been achieved (e.g., Bachmat and Bear, 1964;
Whitaker, 1967; Gray and O’Neill, 1976). These instances
did not so much derive a flow equation as show that a com-
monly used flow equation could be obtained using averag-
ing theorems and appropriate assumptions. Thus, these early
efforts did not contribute significantly to objective develop-
ment of flow equations that seek to capture important physi-
cal processes. They do serve to provide a systematic frame-
work for developing larger-scale equations. Work for two or
more fluid phases in porous media has proven to be more
difficult and has not been as illuminating.

The problems associated with trying to model multiple
fluid phases in porous media include (1) difficulties in prop-
erly accounting for interface properties, (2) lack of definition
of macroscale intensive thermodynamic variables, (3) failure
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to account for system kinematics, and (4) challenges repre-
senting other important physical phenomena explicitly, such
as contact angles and common curve behavior. These four
difficulties sometimes impact the system description in com-
bination.

Multiple-fluid-phase porous media differ from a single-
fluid-phase porous medium system by the presence of the
interface between the fluids. This interface is different from
a fluid–solid interface because of its dynamics. The total
amount of solid surface is roughly constant, or is slowly vary-
ing, for most natural solid materials. The fluid–fluid-specific
interfacial area changes in response to flow in the system
and redistribution of phases. The timescale of this change
is between that of the pore diameter divided by flow veloc-
ity and that of pore diameter divided by solid phase move-
ment. These specific interfacial areas are important for their
extent, surface tension, and curvature. They are the location
where capillary forces are present. Thus, a physically con-
sistent model must account for mass, momentum, and en-
ergy conservation at the interfaces; a model concerned only
with phase behavior cannot represent capillary pressure in a
mechanistically high-fidelity fashion (Gray et al., 2015). This
shortcoming is evidenced, in part, by multi-valuedness when
capillary pressure is proposed to be a function only of satu-
ration (Albers, 2014).

Intensive variables that are introduced at the macroscale
without consideration of microscale precursor values are also
poorly defined. For example, a range of procedures for aver-
aging microscale temperature can be employed that will lead
to different macroscale values unless the microscale tem-
perature is constant over the averaging region. Thus, mere
speculation that a macroscale value exists fails to identify
how or if this value is related to unique microscale variables
and most certainly does not relate the macroscale variable
to microscale quantities. The absence of a theoretical rela-
tion makes it impossible to reliably relate microscale mea-
surements to larger-scale representations (Essex et al., 2007;
Maugin, 1999). Further confusion arises when pressure is
proposed directly at the macroscale. Microscale capillary
pressure is related to the curvature of the interface between
fluid phases and does not depend on the pressures in the
two phases themselves. At equilibrium, microscale capillary
pressure becomes equal to the difference between phase pres-
sures at the interface. Proposed representations of macroscale
capillary pressure often specify that the capillary pressure is
equal to the difference in some directly presumed quantities
known as macroscale pressures of phases. These representa-
tions ignore both interface curvature and the fact that only
when evaluated at the interface is the phase pressure use-
ful for describing equilibrium capillary pressure. This is es-
pecially problematic when boundary pressures in an experi-
mental cell are used to compute a “capillary pressure”. Note
that under these common experimental conditions, regions of
entrapped non-wetting phase are not in contact with the non-
wetting fluid that is observed on the boundary of the system.

The importance of kinematics is recognized, at least im-
plicitly, in modeling many systems at reduced dimensionality
or when averaging over a region the system occupies. For ex-
ample, in the derivation of vertically integrated shallow wa-
ter flow equations, a kinematic condition on the top surface is
imposed based on the condition that no fluid crosses that sur-
face (Vreugdenhil, 1995). Macroscale kinematic equations
for interfaces between fluids in the absence of porous me-
dia have been proposed in the context of boiling (Koca-
mustafaogullari and Ishii, 1995; Ishii et al., 2005). Despite
the fact that interface reconfiguration has an important role
in determining the properties and behavior of a multi-fluid
porous medium system, attention to this feature is extremely
limited (Gray and Miller, 2013; Gray et al., 2015). In some
cases, models of two-fluid-phase flow in porous media have
been proposed that do not account for either system kine-
matics or for interfacial stress (e.g., Niessner et al., 2011).
Both are necessary components of physically realistic, high-
fidelity models.

The mixed success in posing appropriate theoretical mod-
els, making use of relevant data, and harnessing effective
computer power to advance understanding of hydrologic sys-
tems is attributable to the inherent difficulty of each of these
scientific activities. For progress to be made in enhancing un-
derstanding, a significant hurdle must be overcome that re-
quires consistency among these three approaches and within
each approach individually. We have found that by perform-
ing complementary microscale experimental and computa-
tional studies, we have formed a basis for being able to up-
scale data spatially with insights into the operative timescales
for the system (Gray et al., 2015). The small-scale data sup-
port our quest for larger-scale closure relations and elimi-
nates confusion about concepts such as capillary pressure as
a state function and dynamic processes that cause changes in
the value of capillary pressure. Key to being able to develop
faithful models are consistent scale change of thermody-
namic relations and implementation of appropriate kinematic
relations. The approach of combining sound theory, modern
experimental techniques, and advanced computational tech-
niques to the study of environmental systems has applicabil-
ity not only for the porous media systems emphasized here
but also for large-scale systems with interacting atmospheric,
surface, and subsurface elements.

4 Theory

An important aspect of the issues of concern in this work
is related to the various ways in which capillary pressure
can be measured and the consequences of using traditional
approaches that observe fluid pressures on the boundary of
an experimental cell and approximate the capillary pressure
based upon the difference between the non-wetting phase
pressure and the wetting phase pressure. However, even al-
ternative approaches such as those based upon measurements
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using microtensiometers cannot resolve the issues of concern
identified in this work. The differences among approaches
are important, and commonly used approaches are flawed. In
the formulation that follows, we show how microscale pres-
sures can be averaged in a variety of ways as well as the
relationship of these averaged pressures to the true capillary
pressure. We note that averaging of pressures is inherent in
the formulation of macroscale models; and indeed measure-
ment devices themselves provide averages over a length scale
depending upon the device. The issues related to averaging
cannot be avoided.

Averaging of any intensive variable (e.g., pressure, tem-
perature, chemical potential) is problematic because there is
no unique averaging procedure that can be employed. This is
in contrast to obtaining an upscaled value of mass per volume
by integrating the microscale density over a volume to ob-
tain the total mass and then dividing by the volume to get the
upscaled density. Pressure, for example, is a force per area
or, alternatively, an energy per volume. Averaging pressure
over some area in a region as opposed to averaging over the
volume of the region can give different values. Thus, it is im-
perative to identify pressure averages in ways that they arise
in equations and in data collection. Correct identification of
an averaged pressure and association of that average with a
particular process or element of an equation is essential if
the physics of a system are going to be described well at the
macroscale. For this reason, we carefully define the larger-
scale variables that will be used in analyzing the simulated
system and describing system physics in this section. We also
highlight the importance of identifying capillary pressure as
an intrinsic property of an interface rather than as having an
identity that is based on properties of juxtaposed phases.

Direct upscaling can be performed based on microscale
information, providing an opportunity to explore aspects
of macroscale system behavior that have previously been
overlooked. Underpinning this exploration is the precise
definition of macroscale quantities. TCAT models are de-
rived from first principles starting from the microscale. At
the macroscale, important quantities such as phase pres-
sures, specific interfacial areas, curvatures, and other aver-
aged quantities are defined unambiguously based on the mi-
croscale state (e.g., Gray and Miller, 2014). For the two-
fluid-phase flow, we consider the wetting phase (w), the non-
wetting phase (n), and the solid phase (s) within a domain�.
Each phase occupies part of the domain, �α , where α={w,
n, s}. The intersection between any two phases is an inter-
face. The three interfaces are denoted by �wn �ws, and �ns.
Finally, the common curve �wns is defined by the juncture
of all three phases. The TCAT two-phase model is developed
based on averaging with the complete set of entities, with the
index set J ={w, n, s, wn, ws, ns, wns}=JP ∪JI ∪JC cho-
sen to include all three phases JP={w, n, s}, the interfaces
JI={wn, ws, ns}, and the common curve JC={wns}. Based
on this, the pore space is defined as the union of the domains
for the two fluids Df=�w ∪�n.

Macroscale quantities can be determined explicitly from
microscale information based on averages. In this work, the
form for averages is

〈P 〉α,β =

∫
�α

P dr∫
�β

dr
, (1)

where P is the microscale quantity being averaged. The do-
mains for integration can be the full domain �, the entity
domains �α for α ∈J , or their boundary 0α . The bound-
ary of an entity can be further sub-divided into an internal
component 0αi and an external component 0αe, which to-
gether yields 0α =0αi ∪0αe. The external boundary is sim-
ply 0αe=�α ∩0.

The volume fractions, specific interfacial areas, and spe-
cific common curve length are each extent measures that can
be formulated as

εα = 〈1〉�α,�. (2)

The volume fractions correspond to α ∈JP; specific interfa-
cial areas correspond to averaging over a two-dimensional
interface for α ∈JI; and the specific common curve length
corresponds to averaging over a one-dimensional common
curve for α=wns. The system porosity, ε, is directly related
to the solid-phase volume fraction by

ε = 1− εs. (3)

The wetting-phase saturation, sw, can also be expressed in
terms of the extent measures,

sw
=

εw

1− εs
=
εw

ε
. (4)

At the macroscale, various averages arise for the fluid pres-
sures. For flow processes, the relevant quantity is an intrinsic
average of the microscale fluid pressure, pα , expressed as

pα = 〈pα〉�α,�α (5)

for α ∈Jf, which is the index set of fluid phases. In most
laboratory experiments phase pressures are measured at the
boundary. Pressure transducers can be placed within a do-
main at pre-selected locations, which still does not provide
a dense, non-intrusive measure of fluid pressure at all lo-
cations, including along interfaces. The associated average
pressure for the intersection of the boundary of the phase
with the exterior of the domain is

p0α = 〈pα〉0αe,0αe (6)

for α ∈Jf.
The capillary pressure of the two-fluid-phase system de-

pends on the curvature of the interface between the fluids.
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The curvature of the boundary of phase β is defined at the
microscale as

Jβ =∇
′
·nβ , (7)

where ∇ ′= (I−nβnβ) · ∇ is the microscale divergence op-
erator restricted to a surface, I is the identity tensor, and nβ is
the outward normal vector from the β phase. Since the inter-
nal boundary is an interface, the curvature of a phase bound-
ary is also the curvature of the interface between phases for
locations within the domain. At the microscale, the capillary
pressure is defined at the interface between fluid phases as

pwn =−γwnJw, (8)

where γwn is the interfacial tension of the wn interface.
Laplace’s law is a microscale balance of forces acting on an
interface that relates the capillary pressure to the difference
between the microscale-phase pressures evaluated at the in-
terface with

pn−pw =−γwnJw. (9)

It is important to understand that Laplace’s law applies at
points on the wn interface only at equilibrium; the definition
of capillary pressure given by Eq. (8) applies even when the
system is not at equilibrium. Additionally, if the mass per
area of the interface is non-zero, Laplace’s law must be mod-
ified to account for gravitational effects (Gray and Miller,
2014). Care must be taken when extending this relationship
to the macroscale, as is shown below.

Since the capillary pressure is defined for the interface be-
tween the two fluids, �wn, we consider an average of the
microscale curvature based on this entity

Jwn
w = 〈Jw〉�wn,�wn =−〈Jn〉�wn,�wn . (10)

Similarly, the macroscale capillary pressure is

pwn
=−〈γwnJw〉�wn,�wn . (11)

The case of a constant interfacial tension at the microscale
allows for

pwn
=−γwnJwn

w . (12)

In the context of Eq. (9), a third pressure of interest for the
two-fluid-phase systems is the interface-averaged pressure

pwn
α = 〈pα〉�wn,�wn (13)

for α ∈Jf. A macroscale version of Laplace’s law can then
be written as

pwn
n −p

wn
w =−γ

wnJwn
w . (14)

At equilibrium, Laplace’s microscale law will hold every-
where on �wn. This implies that Eq. (14) must also be sat-
isfied at equilibrium for the case of a constant interfacial

tension. However, measurements of pwn
w and pwn

n must be
performed at the interface �wn. This is not practical, and
perhaps not even useful since neither quantity appears in
macroscale models. At the macroscale, it is most convenient
to work in terms of averaged phase pressures pw and pn.
Because pα and pwn

α are not equivalent, the way in which
Eq. (14) can be used is in question. In this work, we explore
this dilemma, giving special consideration to the connectivity
of the wetting phase.

In previously published work, we have considered the im-
pact of non-wetting-phase connectivity in detail (McClure
et al., 2016b). The connectivity-based analysis presented in
that work can be used to re-cast Eq. (14) in terms of the
connected wetting-phase regions. These regions are identi-
fied by sub-dividing �w into Nw sub-regions that do not in-
tersect. The sub-regions cannot touch each other, meaning
that �wi ∩�wj =Ø for all i 6= j with i, j ∈ {1, 2, . . . Nw}

where the overbar on � denotes a closed domain that in-
cludes explicitly the boundary. Interfacial sub-regions are
formed from the intersection �win=�wn ∩�wi . When the
non-wetting phase is fully connected, an approximate ver-
sion of Laplace’s law can be derived as

pn
−pwi =−γwnJwin

w , (15)

for i ∈ {1, 2, . . . , Nw}. This expression relates the average-
phase pressures within each region of wetting phase to the
curvature of the adjoining interface. The average-phase pres-
sures are defined as

pwi = 〈pw〉�wi ,�wi
, (16)

and the average curvature as

Jwin
w = 〈Jw〉�win ,�wi n

. (17)

The quantities pwi and Jwin
w are averaged quantities, but they

are not macroscale quantities. The macroscale pressure of the
wetting phase can be determined as

pw
=

1

εw

Nw∑
i=1

εwipwi , (18)

and the macroscale capillary pressure is

pwn
=−

γwn

εwn

Nw∑
i=1

εwinJwin
w . (19)

For the case where multiple disconnected sub-regions are
present for either phase, the relationship between pn

−pw

and pwn is therefore quite complex from a geometric stand-
point. Associated challenges for the measurement of phase
pressures impact our understanding of the system behavior
at the macroscale, hindering our ability to develop effective
models.
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The definitions of pressures provided demonstrate that
several different pressures are of interest for two-fluid sys-
tems. In general these pressures will not be equivalent. Thus,
care is needed in analyzing the system state and in proposing
relations among pressures. Typically only the pressure de-
fined by Eq. (6) is measured in traditional laboratory exper-
iments, and this is often true even with state-of-the-science
experiments that include high-resolution imaging. On the
other hand, computational approaches provide a means to
compute all of the defined pressures, yielding a basis to de-
duce a more complete understanding of the macroscale be-
havior of the system than would be accessible using ap-
proaches that are only able to control and observe fluid pres-
sures on the boundaries of the domain. Further, the formula-
tion detailed above applies for dynamic conditions as well as
equilibrium or steady-state conditions except where specifi-
cally noted. For dynamic conditions, the averaged quantities
are computed at some instant in time.

5 Materials and methods

5.1 Experimental design

An experimental approach was sought to investigate the dis-
tribution of capillary pressure in a porous medium system.
To meet the objectives of this work, we needed directly to
observe capillary pressure at high resolution, which requires
computation of the average curvature of the fluid–fluid in-
terface as a function of the averaging region. Because we
wished to observe systems at true equilibrium and knew from
recent experience that extended periods of time are neces-
sary to obtain such a state (Gray et al., 2015), we elected to
rely upon a microfluidic approach for which we could verify
true equilibrium states were achieved. Microfluidic devices
are physically small but can be made sufficiently large to sat-
isfy the conditions for being a valid macroscale representa-
tive elementary volume (REV). This is so because the sys-
tems are well above the microscale continuum limit and then
only need to satisfy the conditions for the size being a rep-
resentative sampling of the pore morphology and topology
of the media. The size needed for an REV has been investi-
gated previously for two-fluid-phase flow. Typically in three-
dimensions, a few thousand spheres is needed to produce es-
sentially invariant information for quantities such as satura-
tions, interfacial areas, and capillary pressure. This translates
to slightly over 10 mean grain diameters in each dimension.
Microfluidic cells can be fashioned to meet this requirement.
Even though hydrologic problems motivate this work, the
fundamental nature of the capillary pressure state function
can be investigated with any pair of immiscible fluids. Mini-
mizing the mutual solubilities of each fluid in the companion
fluid is an important design characteristic that can simplify
the experimental work without loss of generality. Thus, phys-
ically small microfluidic systems that did not include water

Non-wetting-fluid-phase 
reservoir 

Wetting-fluid-phase 
reservoir 

Porous medium cecll 

500 µm 

52
5 

µm
 

Figure 1. A depiction of the two-dimensional micromodel that was
used in the displacement experiment. The solid phase consists of
pore-space-free solid cylinders of varying radii distributed in the
horizontal plane represented by black and the regions accessible to
fluid flow by white within the porous medium cell.

were used in this work, which might on the surface appear
to be far removed from the motivating hydrologic systems of
concern.

Experiments involving two-fluid flow through porous me-
dia are typically conducted using a setup similar to the one
shown in Fig. 1. A porous material, in this case a two-
dimensional micromodel cell, is connected to two-fluid reser-
voirs at opposite ends of the sample. The two fluids are
referred to as wetting (w) and non-wetting (n) based on
the relative affinity of the fluids toward the solid phase (s,
the black region of Fig. 1). The two-dimensional micro-
model was fabricated using photolithography techniques.
The 500 µm× 525 µm× 4.4 µm porous medium cell of the
micromodel contained a distribution of cylinders, with a
porosity of 0.54. The short dimension of the cell was ori-
ented in the vertical dimension such that flow was essentially
horizontal. The boundary reservoirs were used to inject fluid
into the sample, resulting in the displacement of one fluid
by the other. As depicted in Fig. 1, one inlet of the cell was
connected to a wetting-fluid-phase (decane) reservoir and
the other to a non-wetting-fluid-phase (nitrogen gas) reser-
voir, with the other four boundaries being solid. A displace-
ment experiment was performed in the micromodel depicted
in Fig. 1 using the experimental methods detailed in Dye
et al. (2015). This approach provides observations of equilib-
rium configurations of the two-fluid-phase system. The dis-
placement experiment began by fully saturating the porous
medium cell with decane through the inlet reservoir located
at one end of the cell. Primary drainage was then carried
out by incrementally increasing the pressure of the nitrogen
reservoir, located on the opposite end of the cell. After each
pressure step, the system was allowed to equilibrate. The fi-
nal equilibrium state for a given pressure boundary condition
was determined based on an invariance of the average mean
curvature of the wn interface, Jwn

w , as determined from image
analysis. After the system reached an equilibrium state, the
pressure in each reservoir, measured with pressure transduc-
ers, and an image of the cell were recorded before another in-
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cremental change in pressure step was applied. The drainage
process was terminated prior to nitrogen breakthrough into
the decane reservoir.

The solid geometry used in our microfluidic experiments
was designed to allow for high capillary pressure at the end
of primary drainage. At the wetting-fluid-phase reservoir, a
layer of evenly spaced homogeneous cylinders was placed
such that the gap between cylinders was uniformly small.
This allowed for a large pressure difference between the fluid
reservoirs, since the non-wetting fluid phase did not penetrate
the wetting-fluid-phase reservoir over a wide range of pres-
sure differences.

5.2 Computational approach

The experimental microfluidics setup described in the previ-
ous section provides a way to perform traditional two-fluid-
flow experiments and observe the internal dynamics of in-
terface kinematics and equilibrium distributions. Microscale-
phase configurations can be observed directly, and averaged
geometric measures can be obtained from this data. While
boundary pressure values are known, the experiment does
not provide a way to measure the microscale pressure field.
Accurate computer simulation of the experiment can pro-
vide this information and can also be used to generate addi-
tional fluid configurations that may not be accessible exper-
imentally. In particular, configurations below the irreducible
wetting-phase saturation will be considered. The common
identification of a saturation as “irreducible” is a misnomer
because wetting-phase saturations beneath this value can be
achieved through, for example, evaporation or by initializ-
ing a saturation below this value in an experimental setup. In
this work, simulation is applied in two contexts: (1) to sim-
ulate the microscale pressure field based on experimentally
observed fluid configurations, and (2) to simulate two-fluid
equilibrium configurations based on random initial condi-
tions. Success with the first set of simulations in matching
the experiments provides confidence that the results of the
second set of computations represent physically reasonable
configurations. Here we summarize each of the approaches.

Simulations are performed using a “color” lattice Boltz-
mann method (LBM). Our implementation has been de-
scribed in detail in the literature (see McClure et al., 2014a,
b). The approach relies on a multi-relaxation time scheme to
model the momentum transport. In the limit of low Mach
number, the implementation recovers the Navier–Stokes
equations with additional contributions to the stress tensor in
the vicinity of the interfaces. The interfacial stresses between
fluids result from capillary forces, which play a dominant
role in many two-fluid porous medium systems. The formu-
lation relies on separate lattice Boltzmann equations (LBEs)
to recover the mass transport for each fluid. This decouples
the density from the pressure to allow for the simulation
of incompressible fluids. Our implementation has been ap-
plied to simulate two-fluid-phase flows in a variety of porous

medium geometries, recovering the correct scaling for com-
mon curve dynamics (McClure et al., 2016a), and it has also
been used to closely predict experimental fluid configura-
tions (Dye et al., 2015; Gray et al., 2015). The effect of grav-
ity was ignored in the simulation of the experimental systems
due to the very small length scale in the vertical dimension.

The implementation allows us to initialize fluid configu-
rations directly from experimental images. Segmented im-
ages are generated from gray scale camera data. These im-
ages were used to specify the initial position of the phases
in the simulations with high resolution. The micromodel
cell was computationally resolved within a domain that is
20× 500× 500. The lattice spacing for the simulation was
δx= 1 µm. Note that the depth of the micromodel was re-
solved in the simulation. The physical depth of the simulation
cell (20 µm) was larger than the depth of the micromodel cell
(4.4 µm). This was done so that the curvature in the depth of
the cell could be resolved accurately. Due to geometric con-
straints, the curvature associated with the micromodel depth
cannot vary. The curvature of the interface between the two
fluids can be written as

Jw =−

(
1
R1
+

1
R2

)
, (20)

where R1 is the radius of curvature in the horizontal plane
and R2 is associated with the micomodel depth. Only R1 can
vary independently. In the simulation, the fixed value of R2
was 10 µm. In the experiment, the fixed value of R2 was
2.2 µm. With R2 known in both cases, the simulated curva-
tures were mapped to the experimental system. In the exper-
imental system, pressure transducers were used to measure
the phase pressures in the boundary reservoirs. These mea-
surements were used to inform pressure boundary conditions
within the simulation. Since boundary conditions were en-
forced explicitly within the simulation, the boundary pres-
sures match the experimentally measured values exactly. The
fluid configurations can vary independently based on these
conditions. Simulations were performed until the interfacial
curvature stabilized, since prior work has demonstrated the
important fact that the curvature equilibrates more slowly
than other macroscale quantities, such as fluid saturation
(Gray et al., 2015).

A set of simulations was also performed based on ran-
dom initial conditions. The approach used to generate ran-
dom fluid configurations and associated equilibrium states
is described in detail by McClure et al. (2016b). The solid
configuration for the flow cell was identical for both sets of
simulations. Blocks of fluid were inserted into the system at
random until a desired fluid saturation was obtained. This
allowed for the generation of fluid configurations at wetting-
phase saturations that were below the experimentally deter-
mined, irreducible wetting-phase saturation. Periodic bound-
ary conditions were then enforced, and the simulation was
performed to produce an equilibrium configuration as de-
termined by the average curvature of the interface between
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Figure 2. Comparison between the experimentally measured
boundary pressure difference p0n −p

0
w and the capillary pres-

sure pwn for the micromodel geometry. The solid line represents
the boundary pressure along primary drainage.

fluids. Based on the final fluid configurations, connectivity-
based analysis was performed to infer macroscale capillary
pressure, saturation, and interfacial area for a dense set of
equilibrium states.

5.3 Results and discussion

Phase connectivity presents a critical challenge for the theory
and simulation of two-fluid-phase flow. When all or part of
a phase forms a fully connected pathway through a porous
medium, flow can occur without the movement of inter-
faces. However, the case where phase sub-regions are not
connected is a source of history-dependent behavior in tra-
ditional models. Traditional models make use of the capil-
lary pressure proposed as a function of the fluid saturation
only, pc(sw). However, this relationship is not unique. Fur-
thermore, key features of the relationship are an artifact of the
experimental design. For example, the irreducible wetting-
phase saturation, sw

I , can play an important role.
To calculate pw as it is defined from Eq. (5), the mi-

croscale pressure field must be known throughout the do-
main. Simulation provides a means to study how the pres-
sure varies within the system and to obtain averages within
all phase sub-regions. Based on Eq. (16), values of pwi , Jwin

w ,
and εwi can be determined for each connected region of the
wetting phase�wi for i ∈ {1, 2, . . . ,Nw}. Two sets of simula-
tions were performed, including (1) a set of 24 configurations
initialized directly from experimentally observed configura-
tions along primary drainage, and (2) a set of 48 configura-
tions with random initial conditions as discussed in Sect. 5.2.
The equilibrium fluid arrangements were analyzed to deter-
mine the true capillary pressure, pwn, by analyzing the cur-
vature of the fluid–fluid interface, fluid saturation, sw, and
specific interfacial area, εwn. The data were aggregated to
produce a dense set of equilibrium configurations.

Pressure transducers located in each of the two-fluid reser-
voirs were used to measure experimental boundary pressures
for each fluid. The resulting values of p0n −p

0
w are plotted

in Fig. 2. Average capillary pressure values calculated from
the simulations are presented along with this experimental
data. The solid line represents the boundary pressure differ-
ence during primary drainage. The boundary pressures for
simulations initialized from experimental data matched the
experimentally measured values of p0n −p

0
w exactly. Bound-

ary measurements taken during simulation are also presented
for imbibition and scanning curve sequences. The values of
p0n −p

0
w plotted in Fig. 2 represent a comprehensive set of

experimental measurements that would typically be identi-
fied as capillary pressure values. This provides a basis for
comparison with measurements of the true capillary pres-
sure based on the configuration of the interfaces. In gen-
eral, agreement between p0n −p

0
w and pwn should not be ex-

pected. Only when both the w and n fluids are fully con-
nected and when the system is at equilibrium will the bound-
ary pressure difference balance the internal average capillary
pressure. The difference between the boundary measurement
and the internal average capillary pressure due to the phases
being disconnected is evident by comparing the experimen-
tal data from primary drainage and the simulation points
initialized from the associated fluid configurations. Pressure
boundary conditions for the simulations were set to match
the measured values of p0n and p0w. As sw decreases, there
is an increasing gap between p0n −p

0
w and the average capil-

lary pressure pwn. This gap is attributed to the formation of
disconnected wetting-phase regions during drainage, an ef-
fect that is most significant as the irreducible wetting-phase
saturation is approached.

In the experimental system, an irreducible wetting-phase
saturation was clearly observed as sw

I = 0.35. This value is
marked with a vertical dashed line in Fig. 2. This irreducible
wetting-phase saturation corresponds to the lowest experi-
mentally accessible wetting-phase saturation, since fluid con-
figurations with sw<sw

I cannot be obtained from the exper-
imental setup and operating conditions. The underlying rea-
son for this is related to the connectivity of the wetting phase.
This can be understood from Fig. 3, which shows the phase
configuration observed experimentally at the end of primary
drainage. Within a connected region of wetting phase, the mi-
croscale pressure, pw, will tend to be nearly constant. How-
ever, the wetting-phase pressure can vary from one region
to another. The connected components of the wetting phase
are shown in Fig. 3b. At equilibrium, the measured differ-
ence in boundary pressures p0n −p

0
w must balance with the

capillary pressure of the interface sub-region between the
two-phase components. Note that the non-wetting phase is
fully connected in Fig. 3a. The implication is that p0n =p

n

at equilibrium. However, p0w only reflects the pressure of
the wetting-phase reservoir. The sub-regions of the wetting
phase that remain after primary drainage are plotted in color
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Figure 3. Phase connectivity has a direct impact on the meaning of the macroscale experimental measurements: (a) experimentally observed
phase configuration corresponding to irreducible wetting-phase saturation, and (b) connected components analysis shows all wetting phase
that remains in the system is disconnected from the wetting-phase reservoir. The black denotes the solid phase, the gray and various colors
denote the wetting phase, and the white denotes the non-wetting phase.

in Fig. 3b. The part of �w that is connected to the wetting-
phase reservoir is shown in light green in Fig. 3b. When the
irreducible wetting-phase saturation is reached the portion
of �w that connects to the reservoir no longer fills any of the
pore space within the micromodel. The irreducible wetting-
phase saturation is associated with the trapped wetting-phase
regions only. Changing the pressure difference between the
fluid reservoirs to increase p0n −p

0
w does not change the

capillary pressure in these regions. This leads to arbitrar-
ily high measurements, claimed to be “capillary pressure”
measurements, which are actually a difference in reservoir
pressures rather than a measure of interface curvature. This
also misconstrues the reduction in wetting-phase saturation
that occurs. The true average capillary pressure, as defined
in Eq. (12), is much lower. Furthermore, the wetting-phase
saturation can be further reduced as a consequence of other
processes, such as evaporation. It is irreducible only within
the context of the experimental design.

In light of this result, it is useful to consider alternative
means to generate two-fluid configurations in porous me-
dia. For example, suppose a fluid configuration was encoun-
tered with sw

= 0.2, a value lower than the irreducible satu-
ration. How can we determine the macroscale capillary pres-
sure? From a traditional macroscale parameterization ap-
proach, the experimentally proposed relation pwn(sw) is of
absolutely no use, since capillary pressure is undefined for
sw<sw

I . From the microscale perspective, it is clearly pos-
sible to produce fluid configurations for which sw<sw

I (for
any system), and to measure the associated capillary pressure
based on Eq. (12). For randomly initialized phase configu-
rations, many such systems are produced. Simulations per-
formed based on these initial geometries lead to equilibrium
capillary pressure measurements shown in Fig. 2. While the
classic “J curve” shape is still present, the experimentally
determined value sw

I offers no guidance regarding this form.

Comparing capillary pressures measured from random ini-
tial conditions with those measured from experimental initial
conditions provides additional insight. First, the true capil-
lary pressure measurements based on Eq. (8) are remarkably
consistent, particularly when considering the values of pwn

obtained as sw
→ sw

I . Compared to randomly initialized data,
configurations from primary drainage have a higher aver-
age capillary pressure. This is expected, since along primary
drainage pwn is determined by the pore-throat sizes. These
represent the highest capillary pressures that are typically ob-
served. We note that primary drainage does not specify the
maximum possible capillary pressure, since bubbles of non-
wetting phase may form that have a smaller radius of curva-
ture than the minimum throat width.

Since the boundary pressure difference p0n −p
0
w cannot be

substituted for the capillary pressure, a key question is how
this impacts capillary pressure hysteresis. When p0n −p

0
w is

used to erroneously infer the capillary pressure, the relation-
ship between capillary pressure and saturation appears as the
black circles in Fig. 2. When the true capillary pressure is
used to plot the same data the shape of the relationship be-
tween capillary pressure and saturation is distinctly different.
Capillary pressures are obtained at all fluid saturations, and
no irreducible wetting-phase saturation is observed. Due to
the fact that the true capillary pressure includes the effects
of disconnected phase regions, moderate capillary pressures
are observed. This is because the extrema for the bound-
ary pressure measurements are not constrained by the in-
ternal geometry. We note that the relationship pwn(sw) re-
mains non-unique, since capillary pressure is not a one-to-
one relationship with wetting-phase saturation. The higher-
dimensional form pwn(sw, εwn) is therefore considered in
Fig. 4. Using a generalized additive model (GAM) (Wood,
2008), a best-fit surface was generated to approximate the
simulated data, incorporating data points derived from both
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Figure 4. Contour plot showing the relationship pwn(sw, εwn), with
contours showing the capillary pressure pwn (kPa). Data points used
to construct the surface are also shown, including randomly initial-
ized fluid configurations and experimentally initialized configura-
tions from primary drainage.

random and experimentally observed initial conditions. The
black lines in Fig. 4 show the iso-contours of the capillary
pressure surface. It is clear that primary drainage leads to
states with lower interfacial area as compared to randomly
initialized configurations. Both sets of points lie along a con-
sistent surface. The extent to which the relationships pwn(sw)

and pwn(sw, εwn) describe the data points measured from
microscale configurations is quantitatively assessed by eval-
uating the residuals for the GAM approximation. The resid-
uals are shown in Fig. 5. The traditionally used relationship
pwn(sw) is able to explain only 60.6 % of the variance in the
data. When the effect of interfacial area is included, pwn(sw,
εwn), 77.1 % of the variance is explained. Based on previous
work for three-dimensional porous media, it is anticipated
that higher fidelity approximations can be produced by in-
cluding the effects of other topological invariants, such as the
average Gaussian curvature or the Euler characteristic (Mc-
Clure et al., 2016b).

6 Conclusions

In this work, we show that the ability to quantitatively ana-
lyze the internal structure of two-fluid porous medium sys-
tems has a profound impact on macroscale understanding.
We considered the behavior of the capillary pressure based
on traditional laboratory boundary measurements and com-
pare this to the true average capillary pressure, a state func-
tion, determined by directly averaging the curvature of the
interface between fluids. We demonstrate that the difference
between the phase pressures as measured from the boundary
cannot be used to deduce the capillary pressure of the sys-
tem. In particular, the high capillary pressure measured for
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Figure 5. Comparison of the residual errors for the GAM fits that
approximate pwn(sw) and pwn(sw, εwn).

irreducible wetting-phase saturation is an artifact of the ex-
perimental design. Three important conclusions result.

First, the true capillary pressure measured at tradition-
ally identified irreducible wetting-phase saturation is signif-
icantly lower than predicted from boundary pressure mea-
surements. This can be understood based on the underlying
phase connectivity. At irreducible wetting-phase saturation,
the wetting-phase reservoir pressure no longer reflects the
internal pressure of the system since the reservoir does not
connect to the remaining wetting phase inside the system.

Second, randomly generated fluid configurations provide a
way to access states where the wetting-phase saturation is be-
low the irreducible wetting-phase saturation. By carrying out
direct averaging based on these states, the capillary pressure
state function can be computed over the full range of possi-
ble saturation values, including configurations that are inac-
cessible from traditional experiments. We note that modified
experimental designs could be used to accomplish the same
studies.

Third, we show that the equilibrium relationship among
capillary pressure, fluid saturation, and interfacial area is
consistent between randomly initialized configurations used
only in computation and experimentally initialized config-
urations. Combining the two data sets, generalized additive
models were used to approximate the surface relating pc, sw,
and εwn. At fixed saturation, states evolved from primary
drainage have higher capillary pressure and lower interfa-
cial area than equilibrium states that evolve from randomly
generated states. Our results are particularly significant for
systems where low wetting-phase saturations are important,
such as evaporation in the vadose zone.
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7 Data availability

Data associated with this publication have been made pub-
licly available on the Digital Rock Portal (https://www.
digitalrocksportal.org/projects/84/). This data set includes
the experimentally observed fluid configurations within the
micromodel systems as well as a complete log of the compu-
tationally generated equilibrium configurations. The DOI for
the data set is doi:10.17612/P74S31.
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