167,839 research outputs found
Technique for pinpointing submicron particles in the electron microprobe
Series of electron micrographs at successively lower magnifications can localize the substrate area sufficiently for a particle to be picked up by the beam of the electron microprobe. This approach could be modified to apply to fractographic studies, particularly of oxidation products stripped from fractures
Microprobe investigation of brittle segregates in aluminum MIG and TIG welds
Quantitative microprobe analysis of segregated particles in aluminum MIG /Metal Inert Gas/ and TIG /Tungsten Inert Gas/ welds indicated that there were about ten different kinds of particles, corresponding to ten different intermetallic compounds. Differences between MIG and TIG welds related to the individual cooling rates of these welds
Enacted task design: tasks as written in the classroom
This paper presents and describes the construct of enacted task design, which considers the way tasks are “written” (designed) by teachers. Two enactments by different teachers based on the same written algebra task were analyzed and compared using the math story framework (Dietiker, 2015). Variations in these stories highlight four dimensions of the teacher’s design work
Charge Density of the Neutron
A model-independent analysis of the infinite-momentum-frame charge density of
partons in the transverse plane is presented for the nucleon. We find that the
neutron parton charge density is negative at the center, so that the square of
the transverse charge radius is positive, in contrast with many expectations.
Additionally, the proton's central u quark charge density is larger than that
of the d quark by about 70 %. The proton (neutron) charge density has a long
range positively (negatively) charged component.Comment: 7 pages, three figures The replacement mainly concerns correcting an
error made in computing the proton up and down quark densities from the
correctly computed proton and neutron charge densities. The proton central u
quark density is now larger than that of the d quar
Parametric study of advanced multistage axial-flow compressors
Axial flow compressor study to increase pressure ratio and reduce overall lengt
Color Transparency at COMPASS energies
Pionic quasielastic knockout of protons from nuclei at 200 GeV show very
large effects of color transparency as -t increases from 0 to several GeV^2.
Similar effects are expected for quasielastic photoproduction of vector mesons.Comment: 9 pages, 4 figure
The cosmological history of accretion onto dark halos and supermassive black holes
Aims: We investigate the cosmological growth of dark halos and follow the consequences of coeval growth for the accretion history of associated supermassive black holes. Methods: The Press-Schechter approximation is used to obtain an analytic expression for the mean rate of growth of dark matter halos. Dark halo accretion rates are compared with numerical work and the consequences for understanding AGN evolution are described. Results: The mean accretion rate onto dark matter halos is shown to have a simple analytic form that agrees with previous numerical work and that may easily be calculated for a wide range of halo mass, redshift and cosmological parameters. The result offers a significant improvement over published fitting formulae deduced from merger trees. We then consider the growth of associated supermassive black holes, and make a basic test of the simple hypothesis of `Pure Coeval Evolution' (PCE) in which, on average, black hole growth tracks dark halo growth. We demonstrate that both the absolute value of the integrated AGN bolometric luminosity density and its cosmological evolution derived from hard X-ray surveys are well-reproduced by PCE. Excellent agreement is found at z >~ 0.5, although the observed luminosity density drops by a factor 2 compared with PCE by z=0: black hole growth appears to decouple from halo growth at low redshifts, and this may be related to the phenomenon of `cosmic downsizing'. Overall, AGN evolution appears either to be caused by or to be closely linked to the slow-down in the growth of cosmic structure. We also discuss the mean Eddington ratio averaged over all galaxies, which is predicted to show strong evolution to higher values with redshift
An analytic model for the epoch of halo creation
In this paper we describe the Bayesian link between the cosmological mass
function and the distribution of times at which isolated halos of a given mass
exist. By assuming that clumps of dark matter undergo monotonic growth on the
time-scales of interest, this distribution of times is also the distribution of
`creation' times of the halos. This monotonic growth is an inevitable aspect of
gravitational instability. The spherical top-hat collapse model is used to
estimate the rate at which clumps of dark matter collapse. This gives the prior
for the creation time given no information about halo mass. Applying Bayes'
theorem then allows any mass function to be converted into a distribution of
times at which halos of a given mass are created. This general result covers
both Gaussian and non-Gaussian models. We also demonstrate how the mass
function and the creation time distribution can be combined to give a joint
density function, and discuss the relation between the time distribution of
major merger events and the formula calculated. Finally, we determine the
creation time of halos within three N-body simulations, and compare the link
between the mass function and creation rate with the analytic theory.Comment: 7 pages, 2 figures, submitted to MNRA
On the error statistics of Viterbi decoding and the performance of concatenated codes
Computer simulation results are presented on the performance of convolutional codes of constraint lengths 7 and 10 concatenated with the (255, 223) Reed-Solomon code (a proposed NASA standard). These results indicate that as much as 0.8 dB can be gained by concatenating this Reed-Solomon code with a (10, 1/3) convolutional code, instead of the (7, 1/2) code currently used by the DSN. A mathematical model of Viterbi decoder burst-error statistics is developed and is validated through additional computer simulations
Combining Physical galaxy models with radio observations to constrain the SFRs of high-z dusty star forming galaxies
We complement our previous analysis of a sample of z~1-2 luminous and
ultra-luminous infrared galaxies ((U)LIRGs), by adding deep VLA radio
observations at 1.4 GHz to a large data-set from the far-UV to the sub-mm,
including Spitzer and Herschel data. Given the relatively small number of
(U)LIRGs in our sample with high S/N radio data, and to extend our study to a
different family of galaxies, we also include 6 well sampled near IR-selected
BzK galaxies at z~1.5. From our analysis based on the radiative transfer
spectral synthesis code GRASIL, we find that, while the IR luminosity may be a
biased tracer of the star formation rate (SFR) depending on the age of stars
dominating the dust heating, the inclusion of the radio flux offers
significantly tighter constraints on SFR. Our predicted SFRs are in good
agreement with the estimates based on rest-frame radio luminosity and the Bell
(2003) calibration. The extensive spectro-photometric coverage of our sample
allows us to set important constraints on the SF history of individual objects.
For essentially all galaxies we find evidence for a rather continuous SFR and a
peak epoch of SF preceding that of the observation by a few Gyrs. This seems to
correspond to a formation redshift of z~5-6. We finally show that our physical
analysis may affect the interpretation of the SFR-M* diagram, by possibly
shifting, with respect to previous works, the position of the most dust
obscured objects to higher M* and lower SFRs.Comment: 26 pages, 15 figures, 3 tables, accepted for publication in MNRAS on
Dec. 4th, 201
- …
