175 research outputs found
Monopolin subunit Csm1 associates with MIND complex to establish monopolar attachment of sister kinetochores at meiosis I
Sexually reproducing organisms halve their cellular ploidy during gametogenesis by undergoing a specialized form of cell division known as meiosis. During meiosis, a single round of DNA replication is followed by two rounds of nuclear divisions (referred to as meiosis I and II). While sister kinetochores bind to microtubules emanating from opposite spindle poles during mitosis, they bind to microtubules originating from the same spindle pole during meiosis I. This phenomenon is referred to as mono-orientation and is essential for setting up the reductional mode of chromosome segregation during meiosis I. In budding yeast, mono-orientation depends on a four component protein complex referred to as monopolin which consists of two nucleolar proteins Csm1 and Lrs4, meiosis-specific protein Mam1 of unknown function and casein kinase Hrr25. Monopolin complex binds to kinetochores during meiosis I and prevents bipolar attachments. Although monopolin associates with kinetochores during meiosis I, its binding site(s) on the kinetochore is not known and its mechanism of action has not been established. By carrying out an imaging-based screen we have found that the MIND complex, a component of the central kinetochore, is required for monopolin association with kinetochores during meiosis. Furthermore, we demonstrate that interaction of monopolin subunit Csm1 with the N-terminal domain of MIND complex subunit Dsn1, is essential for both the association of monopolin with kinetochores and for monopolar attachment of sister kinetochores during meiosis I. As such this provides the first functional evidence for a monopolin-binding site at the kinetochore
Theories of Reference: What Was the Question?
The new theory of reference has won popularity. However, a number of noted philosophers have also attempted to reply to the critical arguments of Kripke and others, and aimed to vindicate the description theory of reference. Such responses are often based on ingenious novel kinds of descriptions, such as rigidified descriptions, causal descriptions, and metalinguistic descriptions. This prolonged debate raises the doubt whether different parties really have any shared understanding of what the central question of the philosophical theory of reference is: what is the main question to which descriptivism and the causal-historical theory have presented competing answers. One aim of the paper is to clarify this issue. The most influential objections to the new theory of reference are critically reviewed. Special attention is also paid to certain important later advances in the new theory of reference, due to Devitt and others
Inhibition of tumour growth by marimastat in a human xenograft model of gastric cancer: relationship with levels of circulating CEA
Inhibition of matrix metalloproteinases (MMPs) is an attractive approach to adjuvant therapy in the treatment of cancer. Marimastat is the first orally administered, synthetic MMP inhibitor to be evaluated, in this capacity, in the clinic. Measurement of the rate of change of circulating tumour antigens was used for evaluating biological activity and defining optimum dosage in the early clinical trials of marimastat. Although tumour antigen levels have been used in the clinical management of cancer for many years, they have not been validated as markers of disease progression. In order to investigate the relationship between the effects of marimastat on tumour growth and circulating tumour antigen levels, mice bearing the human gastric tumour, MGLVA1, were treated with marimastat. The MMP inhibitor exerted a significant therapeutic effect, reducing tumour growth rate by 48% (P = 0.0005), and increasing median survival from 19 to 30 days (P = 0.0001). In addition, carcinoembryonic antigen (CEA) levels were measured in serum samples from animals sacrificed at regular intervals, and correlated with excised tumour weight. It was shown that the natural log of the CEA concentration was linearly related to the natural log of the tumour weight and that treatment was not a significant factor in this relationship (P = 0.7). In conclusion, circulating CEA levels were not directly affected by marimastat, but did reflect tumour size. These results support the use of cancer antigens as markers of biological activity in early phase trials of non-cytotoxic anticancer agents. © 1999 Cancer Research Campaig
Isolation and characterization of pharmaceutical grade human pentraxins, serum amyloid P component and C-reactive protein, for clinical use.
The human pentraxin proteins, serum amyloid P component (SAP) and C-reactive protein (CRP) are important in routine clinical diagnosis, SAP for systemic amyloidosis and CRP for monitoring the non-specific acute phase response. They are also targets for novel therapies currently in development but their roles in health and disease are controversial. Thus, both for clinical use and to rigorously elucidate their functions, structurally and functionally intact, pharmaceutical grade preparations of the natural, authentic proteins are required. We report here the production from normal human donor plasma and the characterization of the first such preparations. Importantly, we demonstrate that, contrary to reports using recombinant proteins and less well characterized preparations, neither CRP nor SAP stimulate the release by human peripheral blood mononuclear cells in vitro of any TNFα, IL-6 or IL-8, nor does SAP cause release of IL-1β or IL-10. Furthermore neither of our preparations was pro-inflammatory in mice in vivo
Integrative Identification of Arabidopsis Mitochondrial Proteome and Its Function Exploitation through Protein Interaction Network
Mitochondria are major players on the production of energy, and host several key reactions involved in basic metabolism and biosynthesis of essential molecules. Currently, the majority of nucleus-encoded mitochondrial proteins are unknown even for model plant Arabidopsis. We reported a computational framework for predicting Arabidopsis mitochondrial proteins based on a probabilistic model, called Naive Bayesian Network, which integrates disparate genomic data generated from eight bioinformatics tools, multiple orthologous mappings, protein domain properties and co-expression patterns using 1,027 microarray profiles. Through this approach, we predicted 2,311 candidate mitochondrial proteins with 84.67% accuracy and 2.53% FPR performances. Together with those experimental confirmed proteins, 2,585 mitochondria proteins (named CoreMitoP) were identified, we explored those proteins with unknown functions based on protein-protein interaction network (PIN) and annotated novel functions for 26.65% CoreMitoP proteins. Moreover, we found newly predicted mitochondrial proteins embedded in particular subnetworks of the PIN, mainly functioning in response to diverse environmental stresses, like salt, draught, cold, and wound etc. Candidate mitochondrial proteins involved in those physiological acitivites provide useful targets for further investigation. Assigned functions also provide comprehensive information for Arabidopsis mitochondrial proteome
Reverse and Conventional Chemical Ecology Approaches for the Development of Oviposition Attractants for Culex Mosquitoes
Synthetic mosquito oviposition attractants are sorely needed for surveillance and control programs for Culex species, which are major vectors of pathogens causing various human diseases, including filariasis, encephalitis, and West Nile encephalomyelitis. We employed novel and conventional chemical ecology approaches to identify potential attractants, which were demonstrated in field tests to be effective for monitoring populations of Cx. p. quinquefasciatus in human dwellings. Immunohistochemistry studies showed that an odorant-binding protein from this species, CquiOBP1, is expressed in trichoid sensilla on the antennae, including short, sharp-tipped trichoid sensilla type, which house an olfactory receptor neuron sensitive to a previously identified mosquito oviposition pheromone (MOP), 6-acetoxy-5-hexadecanolide. CquiOBP1 exists in monomeric and dimeric forms. Monomeric CquiOBP1 bound MOP in a pH-dependent manner, with a change in secondary structure apparently related to the loss of binding at low pH. The pheromone antipode showed higher affinity than the natural stereoisomer. By using both CquiOBP1 as a molecular target in binding assays and gas chromatography-electroantennographic detection (GC-EAD), we identified nonanal, trimethylamine (TMA), and skatole as test compounds. Extensive field evaluations in Recife, Brazil, a region with high populations of Cx. p. quinquefasciatus, showed that a combination of TMA (0.9 µg/l) and nonanal (0.15 ng/µl) is equivalent in attraction to the currently used infusion-based lure, and superior in that the offensive smell of infusions was eliminated in the newly developed synthetic mixture
Differential expression of the brassinosteroid receptor-encoding BRI1 gene in Arabidopsis
Abstract Brassinosteroid (BR)-regulated growth and
development in Arabidopsis depends on BRASSINOSTEROID
INSENSITIVE 1 (BRI1), the BR receptor that
is responsible for initiating the events of BR signalling.
We analysed the temporal and spatial regulation of BRI1
expression using stable transgenic lines that carried BRI1
promoter:reporter fusions. In both seedlings and mature
plants the tissues undergoing elongation or differentiation
showed elevated BRI1 gene activity, and it could be
demonstrated that in the hypocotyl this was accompanied
by accumulation of the BRI1 transcript and its receptor
protein product. In seedlings the BRI1 promoter was also
found to be under diurnal regulation, determined primarily
by light repression and a superimposed circadian control.
To determine the functional importance of transcriptional
regulation we complemented the severely BR insensitive
bri1-101 mutant with a BRI1-luciferase fusion construct
that was driven by promoters with contrasting specificities.
Whereas the BRI1 promoter-driven transgene fully restored the wild phenotype, expression from the photosynthesisassociated
CAB3 and the vasculature-specific SUC2 and
ATHB8 promoters resulted in plants with varying morphogenic
defects. Our results reveal complex differential regulation
of BRI1 expression, and suggest that by influencing
the distribution and abundance of the receptor this regulation
can enhance or attenuate BR signalling
DISC1 and Huntington's disease-overlapping pathways of vulnerability to neurological disorder?
We re-annotated the interacting partners of the neuronal scaffold protein DISC1 using a knowledge-based approach that incorporated recent protein interaction data and published literature to. This revealed two highly connected networks. These networks feature cellular function and maintenance, and cell signaling. Of potentially greatest interest was the novel finding of a high degree of connectivity between the DISC1 scaffold protein, linked to psychiatric illness, and huntingtin, the protein which is mutated in Huntington's disease. The potential link between DISC1, huntingtin and their interacting partners may open new areas of research into the effects of pathway dysregulation in severe neurological disorders
The Euchromatic and Heterochromatic Landscapes Are Shaped by Antagonizing Effects of Transcription on H2A.Z Deposition
A role for variant histone H2A.Z in gene expression is now well established but little is known about the mechanisms by which it operates. Using a combination of ChIP–chip, knockdown and expression profiling experiments, we show that upon gene induction, human H2A.Z associates with gene promoters and helps in recruiting the transcriptional machinery. Surprisingly, we also found that H2A.Z is randomly incorporated in the genome at low levels and that active transcription antagonizes this incorporation in transcribed regions. After cessation of transcription, random H2A.Z quickly reappears on genes, demonstrating that this incorporation utilizes an active mechanism. Within facultative heterochromatin, we observe a hyper accumulation of the variant histone, which might be due to the lack of transcription in these regions. These results show how chromatin structure and transcription can antagonize each other, therefore shaping chromatin and controlling gene expression
- …