108 research outputs found
Point Source Polarimetry with the Gemini Planet Imager: Sensitivity Characterization with T5.5 Dwarf Companion HD 19467 B
Detecting polarized light from self-luminous exoplanets has the potential to provide key information about rotation, surface gravity, cloud grain size, and cloud coverage. While field brown dwarfs with detected polarized emission are common, no exoplanet or substellar companion has yet been detected in polarized light. With the advent of high contrast imaging spectro-polarimeters such as GPI and SPHERE, such a detection may now be possible with careful treatment of instrumental polarization. In this paper, we present 28 minutes of H-band GPI polarimetric observations of the benchmark T5.5 companion HD 19467 B. We detect no polarization signal from the target, and place an upper limit on the degree of linear polarization of p_(CL99.73%) ⩽ 2.4%. We discuss our results in the context of T dwarf cloud models and photometric variability
Dynamical Mass Measurement of the Young Spectroscopic Binary V343 Normae AaAb Resolved With the Gemini Planet Imager
We present new spatially resolved astrometry and photometry from the Gemini
Planet Imager of the inner binary of the young multiple star system V343
Normae, which is a member of the beta Pictoris moving group. V343 Normae
comprises a K0 and mid-M star in a ~4.5 year orbit (AaAb) and a wide 10" M5
companion (B). By combining these data with archival astrometry and radial
velocities we fit the orbit and measure individual masses for both components
of M_Aa = 1.10 +/- 0.10 M_sun and M_Ab = 0.290 +/- 0.018 M_sun. Comparing to
theoretical isochrones, we find good agreement for the measured masses and JHK
band magnitudes of the two components consistent with the age of the beta Pic
moving group. We derive a model-dependent age for the beta Pic moving group of
26 +/- 3 Myr by combining our results for V343 Normae with literature
measurements for GJ 3305, which is another group member with resolved binary
components and dynamical masses.Comment: 12 pages, 7 figures. Accepted to A
Improving and Assessing Planet Sensitivity of the GPI Exoplanet Survey with a Forward Model Matched Filter
We present a new matched filter algorithm for direct detection of point
sources in the immediate vicinity of bright stars. The stellar Point Spread
Function (PSF) is first subtracted using a Karhunen-Lo\'eve Image Processing
(KLIP) algorithm with Angular and Spectral Differential Imaging (ADI and SDI).
The KLIP-induced distortion of the astrophysical signal is included in the
matched filter template by computing a forward model of the PSF at every
position in the image. To optimize the performance of the algorithm, we conduct
extensive planet injection and recovery tests and tune the exoplanet spectra
template and KLIP reduction aggressiveness to maximize the Signal-to-Noise
Ratio (SNR) of the recovered planets. We show that only two spectral templates
are necessary to recover any young Jovian exoplanets with minimal SNR loss. We
also developed a complete pipeline for the automated detection of point source
candidates, the calculation of Receiver Operating Characteristics (ROC), false
positives based contrast curves, and completeness contours. We process in a
uniform manner more than 330 datasets from the Gemini Planet Imager Exoplanet
Survey (GPIES) and assess GPI typical sensitivity as a function of the star and
the hypothetical companion spectral type. This work allows for the first time a
comparison of different detection algorithms at a survey scale accounting for
both planet completeness and false positive rate. We show that the new forward
model matched filter allows the detection of fainter objects than a
conventional cross-correlation technique with a Gaussian PSF template for the
same false positive rate.Comment: ApJ accepte
GPI spectra of HR 8799 c, d, and e from 1.5 to 2.4m with KLIP Forward Modeling
We explore KLIP forward modeling spectral extraction on Gemini Planet Imager
coronagraphic data of HR 8799, using PyKLIP and show algorithm stability with
varying KLIP parameters. We report new and re-reduced spectrophotometry of HR
8799 c, d, and e in H & K bands. We discuss a strategy for choosing optimal
KLIP PSF subtraction parameters by injecting simulated sources and recovering
them over a range of parameters. The K1/K2 spectra for HR 8799 c and d are
similar to previously published results from the same dataset. We also present
a K band spectrum of HR 8799 e for the first time and show that our H-band
spectra agree well with previously published spectra from the VLT/SPHERE
instrument. We show that HR 8799 c and d show significant differences in their
H & K spectra, but do not find any conclusive differences between d and e or c
and e, likely due to large error bars in the recovered spectrum of e. Compared
to M, L, and T-type field brown dwarfs, all three planets are most consistent
with mid and late L spectral types. All objects are consistent with low gravity
but a lack of standard spectra for low gravity limit the ability to fit the
best spectral type. We discuss how dedicated modeling efforts can better fit HR
8799 planets' near-IR flux and discuss how differences between the properties
of these planets can be further explored.Comment: Accepted to AJ, 25 pages, 16 Figure
Performance of the Gemini Planet Imager Non-Redundant Mask and spectroscopy of two close-separation binaries HR 2690 and HD 142527
The Gemini Planet Imager (GPI) contains a 10-hole non-redundant mask (NRM),
enabling interferometric resolution in complement to its coronagraphic
capabilities. The NRM operates both in spectroscopic (integral field
spectrograph, henceforth IFS) and polarimetric configurations. NRM observations
were taken between 2013 and 2016 to characterize its performance. Most
observations were taken in spectroscopic mode with the goal of obtaining
precise astrometry and spectroscopy of faint companions to bright stars. We
find a clear correlation between residual wavefront error measured by the AO
system and the contrast sensitivity by comparing phase errors in observations
of the same source, taken on different dates. We find a typical 5-
contrast sensitivity of at . We explore the
accuracy of spectral extraction of secondary components of binary systems by
recovering the signal from a simulated source injected into several datasets.
We outline data reduction procedures unique to GPI's IFS and describe a newly
public data pipeline used for the presented analyses. We demonstrate recovery
of astrometry and spectroscopy of two known companions to HR 2690 and HD
142527. NRM+polarimetry observations achieve differential visibility precision
of in the best case. We discuss its limitations on
Gemini-S/GPI for resolving inner regions of protoplanetary disks and prospects
for future upgrades. We summarize lessons learned in observing with NRM in
spectroscopic and polarimetric modes.Comment: Accepted to AJ, 22 pages, 14 figure
Characterizing 51 Eri b from 1-5 m: a partly-cloudy exoplanet
We present spectro-photometry spanning 1-5 m of 51 Eridani b, a 2-10
M planet discovered by the Gemini Planet Imager Exoplanet Survey.
In this study, we present new (1.90-2.19 m) and (2.10-2.40
m) spectra taken with the Gemini Planet Imager as well as an updated
(3.76 m) and new (4.67 m) photometry from the NIRC2 Narrow
camera. The new data were combined with (1.13-1.35 m) and
(1.50-1.80 m) spectra from the discovery epoch with the goal of better
characterizing the planet properties. 51 Eri b photometry is redder than field
brown dwarfs as well as known young T-dwarfs with similar spectral type
(between T4-T8) and we propose that 51 Eri b might be in the process of
undergoing the transition from L-type to T-type. We used two complementary
atmosphere model grids including either deep iron/silicate clouds or
sulfide/salt clouds in the photosphere, spanning a range of cloud properties,
including fully cloudy, cloud free and patchy/intermediate opacity clouds.
Model fits suggest that 51 Eri b has an effective temperature ranging between
605-737 K, a solar metallicity, a surface gravity of (g) = 3.5-4.0 dex,
and the atmosphere requires a patchy cloud atmosphere to model the SED. From
the model atmospheres, we infer a luminosity for the planet of -5.83 to -5.93
(), leaving 51 Eri b in the unique position as being one of
the only directly imaged planet consistent with having formed via cold-start
scenario. Comparisons of the planet SED against warm-start models indicates
that the planet luminosity is best reproduced by a planet formed via core
accretion with a core mass between 15 and 127 M.Comment: 27 pages, 19 figures, Accepted for publication in The Astronomical
Journa
The Gemini Planet Imager Exoplanet Survey: Giant Planet and Brown Dwarf Demographics From 10-100 AU
We present a statistical analysis of the first 300 stars observed by the
Gemini Planet Imager Exoplanet Survey (GPIES). This subsample includes six
detected planets and three brown dwarfs; from these detections and our contrast
curves we infer the underlying distributions of substellar companions with
respect to their mass, semi-major axis, and host stellar mass. We uncover a
strong correlation between planet occurrence rate and host star mass, with
stars M 1.5 more likely to host planets with masses between 2-13
M and semi-major axes of 3-100 au at 99.92% confidence. We fit a
double power-law model in planet mass (m) and semi-major axis (a) for planet
populations around high-mass stars (M 1.5M) of the form , finding = -2.4 0.8 and
= -2.0 0.5, and an integrated occurrence rate of %
between 5-13 M and 10-100 au. A significantly lower occurrence rate
is obtained for brown dwarfs around all stars, with 0.8% of
stars hosting a brown dwarf companion between 13-80 M and 10-100
au. Brown dwarfs also appear to be distributed differently in mass and
semi-major axis compared to giant planets; whereas giant planets follow a
bottom-heavy mass distribution and favor smaller semi-major axes, brown dwarfs
exhibit just the opposite behaviors. Comparing to studies of short-period giant
planets from the RV method, our results are consistent with a peak in
occurrence of giant planets between ~1-10 au. We discuss how these trends,
including the preference of giant planets for high-mass host stars, point to
formation of giant planets by core/pebble accretion, and formation of brown
dwarfs by gravitational instability.Comment: 52 pages, 18 figures. AJ in pres
- …