171 research outputs found

    Novel, male-produced aggregation pheromone of the cerambycid beetle Rosalia alpina, a priority species of European conservation concern.

    Get PDF
    Several recent studies have demonstrated the great potential for exploiting semiochemicals in ecology and conservation studies. The cerambycid beetle Rosalia alpina represents one of the flagship species of saproxylic insect biodiversity in Europe. In recent years its populations appear to have declined substantially, and its range has shrunk considerably as a result of forest management and urbanization. Here, we collected volatile chemicals released by males and females of R. alpina. Analyses of the resulting extracts revealed the presence of a single male-specific compound, identified as a novel alkylated pyrone structure. In field bioassays in Slovenia, traps baited with the synthesized pyrone captured both sexes of R. alpina, indicating that the pyrone functions as an aggregation pheromone. Our results represent the first example of a new structural class of pheromones within the Cerambycidae, and demonstrate that pheromone-baited traps can provide a useful tool for sampling R. alpina. This tool could be particularly useful in the ongoing development of conservation strategies for the iconic but endangered Alpine longicorn

    Worldwide tests of generic attractants, a promising tool for early detection of non-native cerambycid species

    Get PDF
    A large proportion of the insects which have invaded new regions and countries are emerging species, being found for the first time outside their native range. Being able to detect such species upon arrival at ports of entry before they establish in non-native countries is an urgent challenge. The deployment of traps baited with broad-spectrum semiochemical lures at ports-of-entry and other high-risk sites could be one such early detection tool. Rapid progress in the identification of semiochemicals for cerambycid beetles during the last 15 years has revealed that aggregation-sex pheromones and sex pheromones are often conserved at global levels for genera, tribes or subfamilies of the Cerambycidae. This possibly allows the development of generic attractants which attract multiple species simultaneously, especially when such pheromones are combined into blends. Here, we present the results of a worldwide field trial programme conducted during 2018-2021, using traps baited with a standardised 8-pheromone blend, usually complemented with plant volatiles. A total of 1308 traps were deployed at 302 sites covering simultaneously or sequentially 13 European countries, 10 Chinese provinces and some regions of the USA, Canada, Australia, Russia (Siberia) and the Caribbean (Martinique). We intended to test the following hypotheses: 1) if a species is regularly trapped in significant numbers by the blend on a continent, it increases the probability that it can be detected when it arrives in other countries/continents and 2) if the blend exerts an effective, generic attraction to multiple species, it is likely that previously unknown and unexpected species can be captured due to the high degree of conservation of pheromone structures within related taxa. A total of 78,321 longhorned beetles were trapped, representing 376 species from eight subfamilies, with 84 species captured in numbers greater than 50 individuals. Captures comprised 60 tribes, with 10 tribes including more than nine species trapped on different continents. Some invasive species were captured in both the native and invaded continents. This demonstrates the potential of multipheromone lures as effective tools for the detection of 'unexpected' cerambycid invaders, accidentally translocated outside their native ranges. Adding new pheromones with analogous well-conserved motifs is discussed, as well as the limitations of using such blends, especially for some cerambycid taxa which may be more attracted by the trap colour or other characteristics rather than to the chemical blend.O

    Isolation and identification of a male-produced aggregation-sex pheromone for the velvet longhorned beetle, Trichoferus campestris.

    Get PDF
    The velvet longhorned beetle, Trichoferus campestris (Faldermann) ("VLB"; Coleoptera: Cerambycidae), is native to eastern Asia where it infests and damages a wide range of deciduous and coniferous tree species, including orchard and timber species. Immature stages of VLB are transported to new countries via international commerce, and populations have established outside the native range of the species. Here, we show that identification of pheromones of invasive pest species can be expedited by knowledge of the semiochemistry of related taxa. Histological sectioning revealed subcuticular, male-specific prothoracic glands connected to pits in the cuticle, which, in related species, are diagnostic for production of male-produced aggregation-sex pheromones, usually characterized by 2,3-alkanediol/hydroxyketone structural motifs. However, in preliminary field bioassays, beetles were not attracted by any known cerambycid pheromones. Subsequently, we identified a novel variant of the hydroxyketone motif ("trichoferone") from headspace volatiles of males. In field bioassays, synthetic trichoferone was more attractive to both sexes of VLB than previously developed high-release-rate ethanol lures, and attraction was strongly female biased. This study demonstrated the utility of the prothoracic gland trait for predicting pheromone use in cerambycid species in the subfamily Cerambycinae, and that identification of pheromones of novel species can be expedited by knowledge of pheromones of related species. Trichoferone should prove to be a valuable tool for detection of VLB in regions where the beetle is or may become established

    Response of Invasive Longhorn Beetles (Coleoptera: Lamiinae) to Known Cerambycid Aggregation-Sex Pheromones in the Puna District of Hawaii Island

    Get PDF
    The Queensland longhorn borer (QLB; Acalolepta aesthetica [Olliff 1890]; Coleoptera: Cerambycidae: Lamiinae: Monochamini) and plumeria long- horn borer (PLB; Lagocheirus obsoletus [Thomson 1778] = Lagocheirus undatus [Voet 1778]; Coleoptera: Cerambycidae: Lamiinae: Acanthocini) are invasive longhorn beetle species that have become established on the island of Hawaii. Both QLB and PLB are polyphagous. Known hosts of QLB include cacao, citrus, kukui, and breadfruit in Hawaii, and QLB are known to attack live, healthy trees. Currently the beetle occurs in the Puna district of the island, but its range is expanding. PLB is a pest of plumeria and other ornamental plants throughout the state of Hawaii and elsewhere. As a first step towards developing a monitoring tool for these invasive beetles, we tested four known aggregation-sex pheromones of cerambycids in this subfamily—monochamol, fuscumol acetate, fuscumol, and geranylacetone—that have proven effective for attracting more than 30 lamiine species in different areas of the world. When tested in panel traps, these compounds individually and in a blend attracted 9 QLB total, which was not significantly different than the 5 QLB captured in solvent control traps. In contrast, traps baited with one of the tested compounds, fuscumol acetate, captured significantly more PLB than solvent blank control traps. We discuss future research directions for developing attractants using chemical ecology approaches to monitor QLB and PLB

    p-Mentha-1,3-dien-9-ol: A novel aggregation-sex pheromone for monitoring longhorn beetles (Cerambycidae) in Eurasia and North America

    Get PDF
    Longhorn beetles (Cerambycidae) are a diverse family of beetles that can cause considerable damage as forest pests and vectors of pathogens, as well as being important components of forest food webs and ecosystem functionality. In recent years, numerous cerambycid pheromones have been identified, revealing some broad general patterns in functionality in terms of sex or aggregation-sex pheromones in different subfamilies and different types of compounds characterizing the pheromones of various cerambycid taxa. Here, we describe the identification of the aggregation-sex pheromones of the Eurasian longhorn beetle Aromia moschata moschata (L.) (Cerambycinae; tribe Callichromatini) and the North American species Holopleura marginata LeConte (Cerambycinae; Holopleurini), as part of an ongoing effort to extend the taxonomic coverage of identified cerambycid pheromones and to expand the prospects for cerambycid monitoring into the study of biodiversity and ecosystem services. Both species were found to use the novel pheromone compound p-mentha-1,3-dien-9-ol, which also attracted significant numbers of the longhorn beetle Xestoleptura crassipes (LeConte) (Lepturinae; Lepturini) in trials in California. p-Mentha-1,3-dien-9-ol represents a class of pheromone compounds novel to both tribes (Callichromatini and Holopleurini), further increasing the chemical space of identified pheromones within the subfamily Cerambycinae. This compound is also noteworthy because it represents an entirely different chemical class of pheromones than the monoepoxide (E)-2-cis-6,7-epoxynonenal, previously reported as an aggregation-sex pheromone for the invasive Asian congener Aromia bungii (Faldermann)

    Ants Discriminate Between Different Hydrocarbon Concentrations

    Get PDF
    Social insects typically discriminate nestmates from non-nestmates using colony-specific blends of cuticular hydrocarbons, which may be considered as a chemical label. Within a species, the cuticular profile shows approximately the same qualitative set of compounds, although these differ quantitatively among colonies. Thus, the relative proportions of particular hydrocarbons may be higher in individuals of one colony compared to those of another (conspecific) colony. Social insects must perceive these differences in ratios in order to efficiently recognize non-nestmates. However, little is known about the underlying perceptual mechanisms. Here we investigated whether ants can discriminate between different doses of individual linear or methyl-branched hydrocarbons. We used the ant Camponotus aethiops as our study organism and differential conditioning of the maxilla-labium extension response as the experimental procedure, to test olfactory discrimination between two concentrations of the same compound (one rewarded and the other punished), using large (wide range, 1:100) and small differences (narrow range, 1:10) in hydrocarbon concentrations. Ants discriminated well between wide-range concentrations of the same compound, but showed asymmetric generalization between narrow-range concentrations. These results indicate that a certain differential in hydrocarbon concentration is essential for efficient discrimination

    Specialized odorant receptors in social insects that detect cuticular hydrocarbon cues and candidate pheromones.

    Get PDF
    Eusocial insects use cuticular hydrocarbons as components of pheromones that mediate social behaviours, such as caste and nestmate recognition, and regulation of reproduction. In ants such as Harpegnathos saltator, the queen produces a pheromone which suppresses the development of workers' ovaries and if she is removed, workers can transition to a reproductive state known as gamergate. Here we functionally characterize a subfamily of odorant receptors (Ors) with a nine-exon gene structure that have undergone a massive expansion in ants and other eusocial insects. We deorphanize 22 representative members and find they can detect cuticular hydrocarbons from different ant castes, with one (HsOr263) that responds strongly to gamergate extract and a candidate queen pheromone component. After systematic testing with a diverse panel of hydrocarbons, we find that most Harpegnathos saltator Ors are narrowly tuned, suggesting that several receptors must contribute to detection and discrimination of different cuticular hydrocarbons important in mediating eusocial behaviour.Cuticular hydrocarbons (CHC) mediate the interactions between individuals in eusocial insects, but the sensory receptors for CHCs are unclear. Here the authors show that in ants such as H. saltator, the 9-exon subfamily of odorant receptors (HsOrs) responds to CHCs, and ectopic expression of HsOrs in Drosophila neurons imparts responsiveness to CHCs
    corecore