22 research outputs found

    Impact of 13-Valent Pneumococcal Conjugate Vaccine on Colonization and Invasive Disease in Cambodian Children

    Get PDF
    Background Cambodia introduced the 13-valent pneumococcal conjugate vaccine (PCV13) in January 2015 using a 3 + 0 dosing schedule and no catch-up campaign. We investigated the effects of this introduction on pneumococcal colonization and invasive disease in children aged <5 years. Methods There were 6 colonization surveys done between January 2014 and January 2018 in children attending the outpatient department of a nongovernmental pediatric hospital in Siem Reap. Nasopharyngeal swabs were analyzed by phenotypic and genotypic methods to detect pneumococcal serotypes and antimicrobial resistance. Invasive pneumococcal disease (IPD) data for January 2012–December 2018 were retrieved from hospital databases. Pre-PCV IPD data and pre-/post-PCV colonization data were modelled to estimate vaccine effectiveness (VE). Results Comparing 2014 with 2016–2018, and using adjusted prevalence ratios, VE estimates for colonization were 16.6% (95% confidence interval [CI] 10.6–21.8) for all pneumococci and 39.2% (95% CI 26.7–46.1) for vaccine serotype (VT) pneumococci. There was a 26.0% (95% CI 17.7–33.0) decrease in multidrug-resistant pneumococcal colonization. The IPD incidence was estimated to have declined by 26.4% (95% CI 14.4–35.8) by 2018, with a decrease of 36.3% (95% CI 23.8–46.9) for VT IPD and an increase of 101.4% (95% CI 62.0–145.4) for non-VT IPD. Conclusions Following PCV13 introduction into the Cambodian immunization schedule, there have been declines in VT pneumococcal colonization and disease in children aged <5 years. Modelling of dominant serotype colonization data produced plausible VE estimates

    Climatic drivers of melioidosis in Laos and Cambodia: a 16-year case series analysis

    Get PDF
    Background: Burkholderia pseudomallei is the cause of melioidosis, a serious and difficult to treat infection that is endemic throughout the tropics. Melioidosis incidence is highly seasonal. We aimed to identify the climatic drivers of infection and to shed light on modes of transmission and potential preventive strategies. Methods: We examined the records of patients diagnosed with melioidosis at the Microbiology Laboratory of Mahosot Hospital in Vientiane, Laos, between October, 1999, and August, 2015, and all patients with culture-confirmed melioidosis presenting to the Angkor Hospital for Children in Siem Reap, Cambodia, between February, 2009, and December, 2013. We also examined local temperature, humidity, precipitation, visibility, and wind data for the corresponding time periods. We estimated the B pseudomallei incubation period by examining profile likelihoods for hypothetical exposure-to-presentation delays. Findings: 870 patients were diagnosed with melioidosis in Laos and 173 patients were diagnosed with melioidosis in Cambodia during the study periods. Melioidosis cases were significantly associated with humidity (p<0·0001), low visibility (p<0·0001), and maximum wind speeds (p<0·0001) in Laos, and humidity (p=0·010), rainy days (p=0·015), and maximum wind speed (p=0·0070) in Cambodia. Compared with adults, children were at significantly higher odds of infection during highly humid months (odds ratio 2·79, 95% CI 1·83–4·26). Lung and disseminated infections were more common during windy months. The maximum likelihood estimate of the incubation period was 1 week (95% CI 0–2). Interpretation: The results of this study demonstrate a significant seasonal burden of melioidosis among adults and children in Laos and Cambodia. Our findings highlight the risks of infection during highly humid and windy conditions, and suggest a need for increased awareness among at-risk individuals, such as children

    Climatic drivers of melioidosis in Laos and Cambodia: a 16-year case series analysis.

    Get PDF
    BACKGROUND: Burkholderia pseudomallei is the cause of melioidosis, a serious and difficult to treat infection that is endemic throughout the tropics. Melioidosis incidence is highly seasonal. We aimed to identify the climatic drivers of infection and to shed light on modes of transmission and potential preventive strategies. METHODS: We examined the records of patients diagnosed with melioidosis at the Microbiology Laboratory of Mahosot Hospital in Vientiane, Laos, between October, 1999, and August, 2015, and all patients with culture-confirmed melioidosis presenting to the Angkor Hospital for Children in Siem Reap, Cambodia, between February, 2009, and December, 2013. We also examined local temperature, humidity, precipitation, visibility, and wind data for the corresponding time periods. We estimated the B pseudomallei incubation period by examining profile likelihoods for hypothetical exposure-to-presentation delays. FINDINGS: 870 patients were diagnosed with melioidosis in Laos and 173 patients were diagnosed with melioidosis in Cambodia during the study periods. Melioidosis cases were significantly associated with humidity (p<0·0001), low visibility (p<0·0001), and maximum wind speeds (p<0·0001) in Laos, and humidity (p=0·010), rainy days (p=0·015), and maximum wind speed (p=0·0070) in Cambodia. Compared with adults, children were at significantly higher odds of infection during highly humid months (odds ratio 2·79, 95% CI 1·83-4·26). Lung and disseminated infections were more common during windy months. The maximum likelihood estimate of the incubation period was 1 week (95% CI 0-2). INTERPRETATION: The results of this study demonstrate a significant seasonal burden of melioidosis among adults and children in Laos and Cambodia. Our findings highlight the risks of infection during highly humid and windy conditions, and suggest a need for increased awareness among at-risk individuals, such as children. FUNDING: Wellcome Trust

    Climatic drivers of melioidosis in Laos and Cambodia: a 16-year case series analysis

    Get PDF
    Background: Burkholderia pseudomallei is the cause of melioidosis, a serious and difficult to treat infection that is endemic throughout the tropics. Melioidosis incidence is highly seasonal. We aimed to identify the climatic drivers of infection and to shed light on modes of transmission and potential preventive strategies. Methods: We examined the records of patients diagnosed with melioidosis at the Microbiology Laboratory of Mahosot Hospital in Vientiane, Laos, between October, 1999, and August, 2015, and all patients with culture-confirmed melioidosis presenting to the Angkor Hospital for Children in Siem Reap, Cambodia, between February, 2009, and December, 2013. We also examined local temperature, humidity, precipitation, visibility, and wind data for the corresponding time periods. We estimated the B pseudomallei incubation period by examining profile likelihoods for hypothetical exposure-to-presentation delays. Findings: 870 patients were diagnosed with melioidosis in Laos and 173 patients were diagnosed with melioidosis in Cambodia during the study periods. Melioidosis cases were significantly associated with humidity (p<0·0001), low visibility (p<0·0001), and maximum wind speeds (p<0·0001) in Laos, and humidity (p=0·010), rainy days (p=0·015), and maximum wind speed (p=0·0070) in Cambodia. Compared with adults, children were at significantly higher odds of infection during highly humid months (odds ratio 2·79, 95% CI 1·83–4·26). Lung and disseminated infections were more common during windy months. The maximum likelihood estimate of the incubation period was 1 week (95% CI 0–2). Interpretation: The results of this study demonstrate a significant seasonal burden of melioidosis among adults and children in Laos and Cambodia. Our findings highlight the risks of infection during highly humid and windy conditions, and suggest a need for increased awareness among at-risk individuals, such as children

    Genomic surveillance for hypervirulence and multi-drug resistance in invasive Klebsiella pneumoniae from South and Southeast Asia

    Get PDF
    Abstract: Background: Klebsiella pneumoniae is a leading cause of bloodstream infection (BSI). Strains producing extended-spectrum beta-lactamases (ESBLs) or carbapenemases are considered global priority pathogens for which new treatment and prevention strategies are urgently required, due to severely limited therapeutic options. South and Southeast Asia are major hubs for antimicrobial-resistant (AMR) K. pneumoniae and also for the characteristically antimicrobial-sensitive, community-acquired “hypervirulent” strains. The emergence of hypervirulent AMR strains and lack of data on exopolysaccharide diversity pose a challenge for K. pneumoniae BSI control strategies worldwide. Methods: We conducted a retrospective genomic epidemiology study of 365 BSI K. pneumoniae from seven major healthcare facilities across South and Southeast Asia, extracting clinically relevant information (AMR, virulence, K and O antigen loci) using Kleborate, a K. pneumoniae-specific genomic typing tool. Results: K. pneumoniae BSI isolates were highly diverse, comprising 120 multi-locus sequence types (STs) and 63 K-loci. ESBL and carbapenemase gene frequencies were 47% and 17%, respectively. The aerobactin synthesis locus (iuc), associated with hypervirulence, was detected in 28% of isolates. Importantly, 7% of isolates harboured iuc plus ESBL and/or carbapenemase genes. The latter represent genotypic AMR-virulence convergence, which is generally considered a rare phenomenon but was particularly common among South Asian BSI (17%). Of greatest concern, we identified seven novel plasmids carrying both iuc and AMR genes, raising the prospect of co-transfer of these phenotypes among K. pneumoniae. Conclusions: K. pneumoniae BSI in South and Southeast Asia are caused by different STs from those predominating in other regions, and with higher frequency of acquired virulence determinants. K. pneumoniae carrying both iuc and AMR genes were also detected at higher rates than have been reported elsewhere. The study demonstrates how genomics-based surveillance—reporting full molecular profiles including STs, AMR, virulence and serotype locus information—can help standardise comparisons between sites and identify regional differences in pathogen populations

    Utilization of a clinical microbiology service at a Cambodian paediatric hospital and its impact on appropriate antimicrobial prescribing

    No full text
    Background: Antimicrobial resistance threatens human health worldwide. Antimicrobial misuse is a major driver of resistance. Promoting appropriate antimicrobial use requires an understanding of how clinical microbiology services are utilized, particularly in resource-limited settings. Objectives: To assess the appropriateness of antimicrobial prescribing and the factors affecting utilization of the established clinical microbiology service (CMS). The CMS comprises the microbiology laboratory, clinical microbiologists (infection doctors) and antimicrobial treatment guidelines. Methods: This mixed-methods study was conducted at a non-governmental Cambodian paediatric hospital. Empirical and post-culture antimicrobial prescriptions were reviewed from medical records. The random sample included 10 outpatients per week in 2016 (retrospective) and 20 inpatients per week for 4 weeks in the medical, neonatal and intensive care wards (prospective). Post-culture prescriptions were assessed in patients with positive blood and cerebrospinal fluid cultures from 1 January 2014 to 31 December 2016. Focus group discussions and semi-structured interviews with clinicians explored barriers and facilitators to use of the CMS. Results: Only 31% of outpatients were prescribed empirical antimicrobials. Post-culture prescriptions (394/443, 89%) were more likely to be appropriate than empirical prescriptions (447/535, 84%), based on treatment guidelines, microbiology advice and antimicrobial susceptibility test results (P"0.015). Being comprehensive, accessible and trusted enabled CMS utilization. Clinical microbiologists provided a crucial human interface between the CMS and physicians. The main barriers were a strong clinical hierarchy and occasional communication difficulties. Conclusions: Antimicrobial prescribing in this hospital was largely appropriate. A culturally appropriate human interface linking the laboratory and physicians is essential in providing effective microbiology services and ensuring appropriate antimicrobial prescribing in resource-limited settings.</p

    Utilization of a clinical microbiology service at a Cambodian paediatric hospital and its impact on appropriate antimicrobial prescribing

    No full text
    Background: Antimicrobial resistance threatens human health worldwide. Antimicrobial misuse is a major driver of resistance. Promoting appropriate antimicrobial use requires an understanding of how clinical microbiology services are utilized, particularly in resource-limited settings. Objectives: To assess the appropriateness of antimicrobial prescribing and the factors affecting utilization of the established clinical microbiology service (CMS). The CMS comprises the microbiology laboratory, clinical microbiologists (infection doctors) and antimicrobial treatment guidelines. Methods: This mixed-methods study was conducted at a non-governmental Cambodian paediatric hospital. Empirical and post-culture antimicrobial prescriptions were reviewed from medical records. The random sample included 10 outpatients per week in 2016 (retrospective) and 20 inpatients per week for 4 weeks in the medical, neonatal and intensive care wards (prospective). Post-culture prescriptions were assessed in patients with positive blood and cerebrospinal fluid cultures from 1 January 2014 to 31 December 2016. Focus group discussions and semi-structured interviews with clinicians explored barriers and facilitators to use of the CMS. Results: Only 31andpercnt; of outpatients were prescribed empirical antimicrobials. Post-culture prescriptions (394/443, 89andpercnt;) were more likely to be appropriate than empirical prescriptions (447/535, 84andpercnt;), based on treatment guidelines, microbiology advice and antimicrobial susceptibility test results (P"0.015). Being comprehensive, accessible and trusted enabled CMS utilization. Clinical microbiologists provided a crucial human interface between the CMS and physicians. The main barriers were a strong clinical hierarchy and occasional communication difficulties. Conclusions: Antimicrobial prescribing in this hospital was largely appropriate. A culturally appropriate human interface linking the laboratory and physicians is essential in providing effective microbiology services and ensuring appropriate antimicrobial prescribing in resource-limited settings.</p

    Improving treatment and outcomes for melioidosis in children, northern Cambodia, 2009-2018

    No full text
    We report trends in manifestations, treatment, and outcomes of 355 children with culture-confirmed melioidosis over 10 years at a pediatric hospital in northern Cambodia. Bacteremia and presentation with pneumonia were risk factors for death. A total of 39 children recovered after being given only oral antimicrobial drug treatment

    Elizabethkingia anophelis infection in infants, Cambodia, 2012-2018

    No full text
    We describe 6 clinical isolates of Elizabethkingia anophelis from a pediatric referral hospital in Cambodia, along with 1 isolate reported from Thailand. Improving diagnostic microbiological methods in resource-limited settings will increase the frequency of reporting for this pathogen. Consensus on therapeutic options is needed, especially for resource-limited settings

    Using machine learning to guide targeted and locally-tailored empiric antibiotic prescribing in a children's hospital in Cambodia

    No full text
    Background: Early and appropriate empiric antibiotic treatment of patients suspected of having sepsis is associated with reduced mortality. The increasing prevalence of antimicrobial resistance reduces the efficacy of empiric therapy guidelines derived from population data. This problem is particularly severe for children in developing country settings. We hypothesized that by applying machine learning approaches to readily collect patient data, it would be possible to obtain individualized predictions for targeted empiric antibiotic choices. Methods and Findings: We analysed blood culture data collected from a 100-bed children's hospital in North-West Cambodia between February 2013 and January 2016. Clinical, demographic and living condition information was captured with 35 independent variables. Using these variables, we used a suite of machine learning algorithms to predict Gram stains and whether bacterial pathogens could be treated with common empiric antibiotic regimens: i) ampicillin and gentamicin; ii) ceftriaxone; iii) none of the above. 243 patients with bloodstream infections were available for analysis. We found that the random forest method had the best predictive performance overall as assessed by the area under the receiver operating characteristic curve (AUC). The random forest method gave an AUC of 0.80 (95%CI 0.66-0.94) for predicting susceptibility to ceftriaxone, 0.74 (0.59-0.89) for susceptibility to ampicillin and gentamicin, 0.85 (0.70-1.00) for susceptibility to neither, and 0.71 (0.57-0.86) for Gram stain result. Most important variables for predicting susceptibility were time from admission to blood culture, patient age, hospital versus community-acquired infection, and age-adjusted weight score. Conclusions: Applying machine learning algorithms to patient data that are readily available even in resource-limited hospital settings can provide highly informative predictions on antibiotic susceptibilities to guide appropriate empiric antibiotic therapy. When used as a decision support tool, such approaches have the potential to improve targeting of empiric therapy, patient outcomes and reduce the burden of antimicrobial resistance
    corecore