
 

© The Author(s) 2019. Published by Oxford University Press for the Infectious Diseases Society of 
America. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution 
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, 
distribution, and reproduction in any medium, provided the original work is properly cited. 

Impact of 13-Valent Pneumococcal Conjugate Vaccine on Colonisation and 

Invasive Disease in Cambodian Children 

 

Paul Turner
1,2

, Phana Leab
1
, Sokeng Ly

1
, Sena Sao

1
, Thyl Miliya

1
, James D. Heffelfinger

3
, 

Nyambat Batmunkh
3
, Fernanda C. Lessa

4
, Jenny A. Walldorf

4
, Terri B. Hyde

4
, Vichit Ork

5
, 

Md. Shafiqul Hossain
6
, Katherine A. Gould

7,8
, Jason Hinds

7,8
, Ben S. Cooper

2,9
, 

Chanpheaktra Ngoun
1
, Claudia Turner

1,2
, Nicholas P.J. Day

2,9
 

 

Affiliations 

1
Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, 

Cambodia 

2
Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, 

University of Oxford, Oxford, UK 

3
Regional Office for the Western Pacific, World Health Organization, Manila, Philippines 

4
Centers for Disease Control and Prevention, Atlanta, GA, USA 

5
National Immunisation Program, Ministry of Health, Phnom Penh, Cambodia 

6
World Health Organization, Phnom Penh, Cambodia 

7
Institute for Infection and Immunity, St George’s, University of London, UK 

8
BUGS Bioscience, London Bioscience Innovation Centre, London, UK 

9
Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol 

University, Bangkok, Thailand 

 

Corresponding author 

Paul Turner; pault@tropmedres.ac; +855 89 287059 

D
ow

nloaded from
 https://academ

ic.oup.com
/cid/advance-article-abstract/doi/10.1093/cid/ciz481/5512979 by St G

eorge's U
niversity of London user on 20 June 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St George's Online Research Archive

https://core.ac.uk/display/211398624?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:pault@tropmedres.ac


 

2 
 

 

Summary 

Introduction of the 13-valent pneumococcal conjugate vaccine into Cambodia has led to 

declines in vaccine-type and antimicrobial resistant pneumococcal colonisation and disease in 

young children. Inclusion of multiple serotype colonisation data did not significantly alter 

vaccine effectiveness estimates. 
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Abstract 

Background 

Cambodia introduced the 13-valent pneumococcal conjugate vaccine (PCV13) in January 

2015 using a 3+0 dosing schedule and no catch-up campaign. We investigated the effects of 

this introduction on pneumococcal colonisation and invasive disease in children aged <5 

years. 

Methods 

Six colonisation surveys were done between January 2014 and January 2018 in children 

attending the outpatient department of a non-governmental paediatric hospital in Siem Reap. 

Nasopharyngeal swabs were analysed by phenotypic and genotypic methods to detect 

pneumococcal serotypes and antimicrobial resistance. Invasive pneumococcal disease (IPD) 

data for January 2012 – December 2018 were retrieved from hospital databases. Pre-PCV 

IPD data and pre-/post-PCV colonisation data were modelled to estimate vaccine 

effectiveness (VE). 

Results 

Comparing 2014 with 2016-2018, and using adjusted prevalence ratios, vaccine effectiveness 

(VE) estimates for colonisation were 16.6% (95% CI 10.6–21.8) for all pneumococci and 

39.2% (26.7–46.1) for vaccine serotype (VT) pneumococci. There was a 26.0% (17.7–33.0) 

decrease in multi-drug resistant pneumococcal colonisation. IPD incidence was estimated to 

have declined by 26.4% (14.4–35.8) by 2018, with a decrease of 36.3% (23.8–46.9) for VT 

IPD and an increase of 101.4% (62.0–145.4) for non-vaccine serotype IPD. 

Conclusions 

Following PCV13 introduction into the Cambodian immunisation schedule there have been 

declines in VT pneumococcal colonisation and disease in children aged <5 years. Modelling 

of dominant serotype colonisation data produced plausible vaccine effectiveness estimates. 
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Introduction 

Introduction of pneumococcal conjugate vaccines (PCVs) has significantly reduced the 

incidence of invasive pneumococcal disease (IPD, Streptococcus pneumoniae infection with 

a positive sterile-site culture [2]) and has led to declines in antimicrobial resistant (AMR) IPD 

[3]. However, given the large number of serotypes not included in current PCV formulations, 

initial declines in overall IPD and AMR-IPD incidence have been eroded by increases in non-

vaccine serotype IPD [4, 5]. 

Nasopharyngeal (NP) pneumococcal colonisation is common in childhood and colonisation-

based surveillance may be used to predict serotype replacement and IPD incidence changes 

post-PCV introduction [6-9]. Children may carry multiple serotypes concurrently [11]. A 

decline in multiple serotype colonisation has been noted following PCV introduction [12], 

but the effects of multiple serotype colonisation on PCV impact models are unknown. 

Uptake of PCV in Asia has been relatively slow [13]. With Gavi support, in January 2015 

Cambodia added PCV13 to the national immunisation schedule with a 3+0 dosing schedule 

(6, 10 14 weeks; no booster) and no catch-up campaign. Following roll out, national PCV13 

coverage estimates for the 1
st
 / 3

rd
 doses were 102% (reflecting potential denominator issues) 

/ 77% in 2015, 100% / 96% in 2016, and 93% / 91% in 2017 [13]. 

To date there are limited pneumococcal disease data for Cambodia. A non-governmental 

paediatric hospital documented that, between 2007 and 2012, S. pneumoniae was responsible 

for 10% of bloodstream infections in hospitalised children, with a case fatality rate of 15.6% 

[14]. Pre-PCV13 introduction surveys at this hospital documented pneumococcal colonisation 

in 68% of outpatient children aged <5 years [15]. 

The objective of this study was to estimate PCV13 impact on NP colonisation, invasive 

disease and AMR in Cambodian children utilising pre- and post-PCV13 introduction data 

from a well-established sentinel surveillance site. 
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Methods 

Study site 

Angkor Hospital for Children (AHC) is a non-governmental paediatric hospital located in the 

north-western city of Siem Reap. The hospital, and an associated satellite clinic at Sot Nikom 

district hospital, has 100 inpatient beds and provides free primary to tertiary level healthcare 

to children <16 years of age, without geographic restrictions. There are 180,000 outpatient 

visits and 6,000 inpatient admissions per year. 

Nasopharyngeal colonisation surveys 

Six discrete outpatient-based NP colonisation surveys were undertaken between January 2014 

and January 2018. Two pre-PCV surveys (January and August 2014) have been described 

previously [15]. Pre-PCV data from children aged <5 years were further analysed in the 

current study. For each of four post-PCV surveys (August 2015, January 2016, January 2017, 

January 2018), the aim was to recruit 450 children aged <5 years presenting to the hospital 

outpatient department with minor illnesses over a period of a month. Children with suspected 

pneumonia and/or requiring hospitalisation were excluded and each child could be enrolled 

only once per survey. Immunisation status was captured by parent/guardian recall or from the 

immunisation record card, where available. A nasopharyngeal swab was taken from each 

child. 

The WHO colonisation detection protocol was used to identify pneumococcal serotype(s) 

present in the swabs [16]. Antimicrobial susceptibility testing (AST) was performed 

following Clinical Laboratory and Standards Institute guidelines [17]. Penicillin non-

susceptibly was defined as a minimum inhibitory concentration of ≥0.12 µg/mL. Multi-drug 

resistance (MDR) was defined as resistance to ≥3 drug classes (Supplementary Methods). 
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Detection of multiple pneumococcal serotype colonisation 

To determine characteristics of multiple serotype colonisation pre- and post-PCV 

introduction, 500 pneumococcus-positive NP swabs were further processed by latex sweep 

and molecular serotyping microarray methods [11]. One hundred pneumococcus positive 

swabs were selected randomly from each January survey except for 2018, where the first 100 

eligible swabs were selected (Supplementary Methods). 

Invasive pneumococcal disease data 

Culture-confirmed IPD cases from 1
st
 January 2012 to 31

st
 December 2018 were identified 

from the hospital laboratory database, which captures data on all clinical specimens 

submitted for culture. A case of IPD was defined as S. pneumoniae isolated from blood, 

cerebrospinal fluid, or other normally sterile sites in a child aged <5 years of age. Only the 

first isolate from each infection episode was included. Over this time period, blood and other 

syndrome appropriate specimens were taken for culture on children requiring hospitalisation 

with fever and/or signs of sepsis, at the discretion of the treating clinician. Specimen 

collection guidelines and active diagnostic stewardship were available throughout [18]. 

Details of specimen processing have been summarised elsewhere [19]. 

Data analysis 

Categorical variables were compared by the chi-squared or Fisher’s exact test. Trends were 

assessed by the Cochran-Armitage test. Non-normally distributed continuous variables were 

compared by the Wilcoxon rank sum or Kruskal-Wallis test. Analyses were done using R 

version 3.5.1 [20]. 

Estimation of PCV13 effect was done by assessment of changes in vaccine-type (VT; 

serotypes 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19F, 19A, 23F) pneumococcal colonisation 

prevalence pre- (2014) and post-PCV (2016-18) introduction, stratified by age. Log-binomial 

regression was used to determine prevalence ratios (PR) and 95% confidence intervals (CI) 
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for overall, VT, non-vaccine type (NVT), and non-typeable (NT) pneumococcal colonisation. 

Models were adjusted for epidemiologic factors associated with variability in colonisation: 

upper respiratory tract infection (URTI) symptoms, co-habitation with another child aged <5 

years, definite recent antibiotic use, and enrolment season (January vs August) [21-23]. 

Vaccine effectiveness (VE) was calculated as 100 × (one minus the adjusted PR). 

IPD detection rates were estimated using total blood cultures processed from children aged 

<5 years as the denominator, since the hospital catchment area cannot be readily quantified, 

and this denominator would account for temporal variations in culture practice. Poisson 

regression was used to determine incidence rate ratios (IRR) for invasive disease. 

Modelling of vaccine effect using combined colonisation and disease data was done as 

specified by Weinberger et al (their Model 1, see Supplementary Methods) [8].  

Ethics statement 

Colonisation survey protocols were approved by the AHC Institutional Review Board 

(422/13, 371/14, 0348/15), Cambodia National Ethics Committee for Health Research 

(210NECHR, 289NECHR, 150NECHR, 137NECHR), WHO Western Pacific Regional 

Office IRB (2015.6.CAM.1.EPI), and the University of Oxford Tropical Research Ethics 

Committee (1009-13, 559-15). Analysis of stored swabs by latex sweep and microarray was 

determined by the US-CDC Center for Global Health Human Subjects Review to be a non-

research activity (CGH HSR 2017-532), and CDC IRB review was not required. 

 

Results 

Study participants 

A total of 1,805 NP swabs were collected in the four post-PCV surveys. Four swabs were 

removed due to enrolment errors, leaving 1,801 analysable swabs. There were 721 NP swabs 
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collected from children aged <5 years in the two pre-PCV surveys, giving a combined total of 

2,252 NP swabs. 

The median age of children was 1.51 (interquartile range (IQR) 0.76 – 2.88) years in the pre-

PCV surveys and 1.39 (IQR 0.77 – 2.64) years in the post-PCV surveys (p=0.2). Three 

children (0.1%) were known to be HIV-positive. Demographic and basic health data on the 

children contributing swabs are summarised in Table 1. Half (52.7%; 949/1,801) of the 

children enrolled in post-PCV surveys were age-eligible to have been fully immunised: 

86.7% (827/949) of these children were reported to have received ≥2 doses of PCV13. In the 

2018 survey, ≥2 doses of PCV13 had been received by 75.4% (342/453) of enrolled children, 

although this was verified by vaccine record visualisation in only 65 (14.3%). 

Pneumococcal colonisation 

Two-thirds (1,629/2,522; 64.6%) of children were colonised by S. pneumoniae: 68.0% 

(490/721) in the pre-PCV surveys and 63.2% (1,139/1,801) in the post-PCV surveys 

(p=0.03). Comparing pre-PCV with early post-PCV and late post-PCV time periods, overall 

colonisation prevalence and colonisation by penicillin non-susceptible / MDR pneumococci 

decreased substantially in the 0-11 month old children (Figure 1 and Table S1). There were 

declines in colonisation by VT pneumococci, and increases in NVT colonisation, in the 0-11 

month, 12-23 month, and 24-35 month age groups. No clear changes in colonisation 

characteristics were noted in the 36-47 month and 48-59 month age groups, who were not 

age-eligible for PCV13 (Figure 1; Table S1). 

NP swab culture yielded 1,759 pneumococci. Forty five serotypes plus NT isolates were 

identified: 56.1% of isolates were VT. Serotype 6A or 6B was the most commonly carried 

serotype in all surveys until January 2018, when serotypes15B/C dominated (Figure S1). VT 

isolates decreased, NVT increased (notably 15A, 15B/C, 23A, and 34) and NT did not change 

over time (Figure 2). Penicillin, co-trimoxazole, and tetracycline resistance rates were high 
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(>60%), with lower rates of resistance to macrolides, ceftriaxone, and chloramphenicol 

(Table S2). VT isolates were more likely to be MDR than NVT or NT isolates (86.8% vs 

47.6%, p<0.001). The proportion of isolates that were penicillin non-susceptible decreased 

over time (81.0% in 2014 to 65.6% in 2018, p<0.0001), with smaller declines in tetracycline 

resistance and multi-drug resistance. There were no clear trends in MDR prevalence within 

serotype categories over time (Figure S2). 

Multiple pneumococcal serotype colonisation 

In the 500 cases selected for detailed analysis, multiple pneumococcal serotype colonisation 

was detected in 10.0% (50/500), 12.2% (61/500), 20.8% (104/500) of children by WHO 

serotyping, latex sweep and microarray, respectively, with no evidence of a temporal trend 

(Figure S3). Co-colonisation patterns are summarised in Figure S4. 

Invasive disease 

Between 1
st
 January 2012 and 31

st
 December 2018, there were 81 invasive pneumococcal 

disease episodes caused by 16 serotypes in hospitalised children aged <5 years (Figure S5). 

In these episodes, 73 children had a positive blood culture alone, 5 had a positive pleural fluid 

culture (+positive blood culture in 4), and 3 had a positive CSF culture (+positive blood 

culture in 2). The median age at presentation was 1.6 years (IQR 0.9 – 2.3), with no 

difference between pre- and post-PCV periods. Vaccine serotypes accounted for 91.4% 

(74/81) of infections: 6B (14, 17.3%), 14 (14, 17.3%), 19A (13, 16.0%), 1 (10, 12.3%), 23F 

(6, 7.4%), 6A (5, 6.2%), 19F (5, 6.2%), 18C (3, 3.7%), 3 (2, 2.5%), 12F (2, 2.5%), 38 (2, 

2.5%), 4 (1, 1.2%), 5 (1, 1.2%), 13 (1, 1.3%), 15A (1, 1.2%), 23A (1, 1.2%). In the pre-PCV 

period 92.9% (39/42) isolates were VT compared with 86.4% (19/22) in the post-PCV period 

(p=0.4) (Figures S5 and S6). The IPD detection rate fell from 3.76 (95% CI 2.71 – 5.08) / 

1,000 blood cultures in the pre-PCV period to 2.33 (95% CI 1.46 – 3.53) / 1,000 blood 

cultures in the post-PCV period (Table 2; Figure S7).  
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Overall, 70.4% (57/81) of invasive isolates were penicillin non-susceptible and 67.9% 

(55/81) were MDR, with no change post-PCV introduction. VT pneumococci were more 

likely to be MDR than NVT isolates (71.4% vs 28.6%, p=0.03). 

Estimates of PCV13 effectiveness 

Vaccine effectiveness against colonisation 

Comparing pre- and post-PCV periods, the VE estimates for colonisation were 16.6% (95% 

CI 10.6 – 21.8%) for all pneumococci and 39.2% (95% CI 26.7 – 46.1%) for VT 

pneumococci, with a 23.3% (95% CI -2.6 – 50.1%) increase in NVT colonisation (Table 3). 

For colonisation by AMR pneumococci, VE estimates were 22.5% (95% CI 15.0 – 29.0%; 

penicillin non-susceptible) and 26.0% (95% CI 17.7 – 33.0%; MDR). 

Vaccine effectiveness against invasive disease 

There was a 37.9% (95% CI 63.6 to -2.9%) decline in overall IPD (p=0.07) and a 42.3% 

(95% CI 67.3 to -1.5%) decline in VT IPD (p=0.05), between pre- and post-PCV periods. No 

overall change in NVT IPD was detected (p=0.8) (Table 4). 

Combined colonisation-invasive disease model estimates of vaccine effectiveness against 

invasive disease 

In the model including pre-PCV IPD data and the pre- and post-PCV colonisation data, IPD 

incidence was estimated to have declined by 26.4% (95% CI 14.4 – 35.8) in 2018 (Table S3). 

VT IPD was estimated to have declined by 36.3% (95% CI 23.8 – 46.9) with a 101.4% (95% 

CI 62.0 – 145.4) increase in NVT IPD. Repeating the model with a subset of carriage data 

and sensitive methods to detect multiple serotype colonisation data yielded VE estimates that 

were very similar to each other (Table S4). The point estimates were all slightly decreased 

compared with the model including the entire colonisation dataset processed to detect 

dominant serotype(s) only (Figure 3). 
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Discussion 

This study describes the effects of PCV13 on pneumococcal colonisation, invasive disease, 

and AMR in Cambodian children three years after its introduction into the routine 

immunisation schedule. 

PCV13 was introduced without a catch-up campaign. However, coverage of target children 

was reported to be high nationally and, by the 2018 colonisation survey, around three-

quarters of enrolled children <5 years were reported to have received ≥2 doses. Three years 

following introduction, there was a 39% decline in VT colonisation and a 23% increase in 

NVT colonisation. Despite declines, the prevalence of VT colonization among children age-

eligible to have received PCV13 continues to be high (~29%), which may explain the lack of 

indirect effects observed in children >36 months, i.e. those too old to have received PVC13. 

In comparison, two years after introduction of PCV10 in Kilifi, Kenya (with catch-up 

campaign), VT colonisation prevalence had declined by 64% and NVT colonisation increased 

by 37% in children aged <5 years [23]. Reductions in VT colonisation of 44-66% and 

increases in NVT colonisation of 5-72% were reported recently in young children, three years 

after PCV10 introduction in Fiji, an Asia-Pacific region upper middle-income country [24]. A 

recent model-based study estimated that it would take approximately 10 years to eliminate 

VT colonisation, with almost complete replacement by NVT colonisation, if PCV13 were 

introduced in Vietnam without a catch up campaign [25]. In due course, it will be important 

to compare findings from our study to ongoing colonisation-based PCV impact studies in Lao 

People’s Democratic Republic and Papua New Guinea [26]. 

Antimicrobial resistance rates were high in VT pneumococci and a reduction in colonisation 

by MDR (VE 26%) and penicillin non-susceptible pneumococci (VE 23%) was seen 

following PCV13 introduction. At the isolate level, there was a decline in the proportion of 

pneumococci that were penicillin non-susceptible, from 81% in 2014 to 66% in 2018. 
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The nature of the study site meant that estimation of population IPD rates was not possible. 

However, comparing post-PCV (January 2016 to December 2018) with pre-PCV (January 

2012 to December 2014) blood culture data, a 38% decline in overall IPD, with a 42% 

decline in VT IPD, was detected. Unfortunately, the small number of positive cultures and 

wide confidence intervals limit the interpretability of these results. This is a frequent problem 

when attempting to estimate the impact of PCVs in low- and middle income countries 

(LMICs), where microbiology and epidemiologic surveillance resources are scarce and pre-

hospital treatment may reduce blood culture yields [10]. However, it has been shown that 

reasonable estimates of PCV impact could be obtained by modelling pre-PCV IPD data with 

changes in colonisation before and after PCV7 introduction [8]. Using the data from the 

current study, this approach estimated that there would have been a 26% decrease in overall 

IPD, a 36% decrease in VT IPD and a 101% increase in NVT IPD incidence in 2018, 

compared to baseline (2012-2014). These point estimates are somewhat more modest than the 

post-PCV declines in IPD observed in large population-based IPD surveillance in other 

LMICs [27, 28], perhaps as a result of the known limitations of the model which will tend to 

underestimate declines in VT disease as a result of the requirement for inclusion of continuity 

corrections for non-carried serotypes. Weinberger and colleagues were cautiously optimistic 

that their PCV7-validated model would produce reasonable results when applied to PCV13 

data, but stressed that validation would be important using datasets where temporally variable 

and highly invasive serotypes, such as 1 and 5, are found in NP specimens [8]. We identified 

forty-three colonising serotypes and 16 serotypes from IPD cases. Serotype 1 was responsible 

for 13% of IPD cases, and disappeared rapidly after PCV13 introduction, but was not 

detected in NP specimens. Whilst we cannot formally validate the model results, the findings 

demonstrate comparable trends to those from population–based surveillance, and the 

modelled confidence intervals overlap with those from population-based studies in other 
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locations. However, given the heterogeneity in invasiveness between serotypes, ongoing IPD 

surveillance remains a critically important activity to monitor vaccine impact [29]. 

The impact of inclusion of multiple pneumococcal serotype colonisation data on disease 

model estimates was unknown and at least one study has demonstrated a decline in multiple 

serotype colonisation following PCV introduction [12]. In Cambodian children, multiple 

serotype colonisation was detected in up to 24% of NP swabs using sensitive methodologies 

but did not vary significantly over time. Inclusion of multiple serotype data did not impact on 

modelled VE estimates, suggesting that dominant serotype data generated from studies using 

the standard WHO methodology for pneumococcal colonisation detection is adequate for 

determination of VE in such models [16]. 

The study has limitations. All data come from a single sentinel surveillance site, which may 

limit generalisability. However, given the sample size, location and unrestricted catchment 

area (where approximately one-third of patients reside outside of Siem Reap province), the 

study population is likely to be representative of many children in Cambodia. Selection of 

children with minor illnesses only was done to minimise potential biases of recruiting 

hospital attendees into the colonisation surveys. The small number of children in whom PCV 

immunisation status could be verified from their personal immunisation record card meant 

that planned analyses of PCV impact on colonisation at the individual level were not 

possible. The lack of a population denominator limits the utility of IPD data. However, this 

has been compensated by estimating VE using a combined colonisation–invasive disease data 

approach, which was previously well validated for estimation of VE for PCV7 [8]. The 

frequency of blood culture collection in the AHC outpatient department decreased 

significantly in late 2015 following introduction of updated laboratory guidelines, which may 

have reduced IPD case detection rates, although there were no changes in culture practices 

for patients requiring hospitalisation. This change in diagnostic practice will not have 
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impacted on modelled VE estimates. Finally, only three years of post-PCV data were 

collected. Future surveillance efforts should ideally include older children and adults to 

capture indirect effects of immunisation. 

In conclusion, introduction of PCV13 into the childhood immunisation schedule in Cambodia 

has resulted in declines in VT pneumococcal colonisation and disease in children aged <5 

years. Ongoing surveillance will be critical to determine further changes as the PCV13 

immunisation programme matures. 
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Tables 

Table 1. Demographic, health and PCV13 immunisation summary data for children 

included in the pre- and post-PCV colonisation surveys 

Variable Pre-PCV Post-PCV P-value 
Jan-2014 Aug-2014 Aug-2015 Jan-2016 Jan-2017 Jan-2018  

Children, n 373 348 450 449 449 453 - 
Demographic / health        

Age (y), 
median (IQR) 

1.35 
(0.73–2.78) 

1.46 
(0.79–2.95) 

1.51 
(0.82–2.79) 

1.26 
(0.75–2.40) 

1.49 
(0.77–2.90) 

1.36 
(0.76–2.38) 

0.1 

Gender, 
n (% female) 

165 (44.2) 171 (49.1) 222 (49.3) 218 (48.6) 215 (47.9) 215 (47.5) 0.7 

URTI symptoms, 
n (%) 

352 (94.4) 265 (76.1) 426 (94.7) 422 (94.0) 402 (89.5) 404 (89.2) 0.5 

Co-habiting with other 
children <5y, n (%) 

107 (28.8) 102 (29.3) 162 (36.0) 134 (29.9) 156 (34.7) 156 (34.4) 0.06 

Definite recent 
antibiotic use, n (%) 

13/371 (3.5) 24/346a 
(6.9) 

27 (6.0) 11/447a 
(2.5) 

12 (2.7) 15 (3.3) 0.03 

PCV immunisation        
PCV13 (≥1 dose) – 

verifiedb, n (%) 
0 (0.0) 0 (0.0) 25 (5.6) 49 (10.9) 51 (11.4) 72 (15.9) - 

PCV13 (≥1 dose) – 
parent recall, n (%) 

0 (0.0) 0 (0.0) 41 (9.1) 133 (29.6) 222 (49.7) 291 (64.2) - 

PCV13 (≥2 doses) – 
verifiedb, n (%) 

0 (0.0) 0 (0.0) 24 (5.3) 42 (9.4) 46 (10.3) 65 (14.3) - 

PCV13 (≥2 doses) – 
parent recall, n (%) 

0 (0.0) 0 (0.0) 40 (8.9) 130 (29.0) 204 (45.6) 277 (61.1) - 

a 
Data missing for two cases in Aug-2014 and Jan-2016 surveys. 

b 
Immunisation status verified by visualisation of the child’s personal immunisation record 

IQR: inter-quartile range; URTI: upper respiratory tract infection.
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Table 2. Summary of invasive pneumococcal disease (IPD) episodes per 1,000 blood 

cultures in hospitalized children aged <5 years, by time period 

 Blood 

cultures (n) 

IPD (n) IPD detection 

rate (95% CI) 

VT (n) VT detection 

rate (95% CI) 

NVT (n) NVT detection 

rate (95% CI) 

Pre-PCV 

(2012-2014) 

11,170 42 3.76 

(2.71 – 5.08) 

39 3.49 

(2.48 – 4.77) 

3 0.27 

(0.05 – 0.78) 

Post-PCV 

(2016-2018) 

9,425 22 2.33 

(1.46 – 3.53) 

19 2.01 

(1.21 – 3.15) 

3 0.32 

(0.07 – 0.09) 

Early post-PCV 

(2016-2017) 

6,556 16 2.44 

(1.40 – 3.96) 

15 2.29 

(1.28 – 3.77) 

1 0.15 

(0.04 – 0.85) 

Late post-PCV 

(2018) 

2,869 6 2.09 

(0.77 – 4.55) 

4 1.39 

(0.38 – 3.57) 

2 0.70 

(0.08 – 2.51) 

CI: confidence interval; VT: vaccine type; NVT: non-vaccine type. 
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Table 3. Estimates of PCV13 effectiveness against colonisation in Cambodian children 

aged <5 years 

 Colonisation prevalence 
(95% CI) 

Crude prevalence ratio 
(95% CI) 

Adjusteda prevalence 
ratio (95% CI) 

P-value 

All pneumococci     
Pre-PCV (2014)b 68.0 (64.4 – 71.4) - - - 
Post-PCV (2016-2018) 64.2 (61.5 – 66.7) 0.944 (0.866 – 1.008) 0.834 (0.782 – 0.894) <0.0001 

Early post-PCV 
(2016-2017) 

62.1 (58.9 – 65.3) 0.914 (0.851 – 0.982) 0.806 (0.750 – 0.869) <0.0001 

Late post-PCV 
(2018) 

68.2 (63.7 – 72.5) 1.004 (0.925 – 1.087) 0.890 (0.820 – 0.966) 0.006 

VT pneumococci     
Pre-PCV (2014) 47.6 (43.9 – 51.3) - - - 
Post-PCV (2016-2018) 32.3 (29.8 – 34.8) 0.678 (0.609 – 0.757) 0.608 (0.539 – 0.689) <0.0001 

Early post-PCV 
(2016-2017) 

34.1 (31.0 – 37.3) 0.716 (0.636 – 0.806) 0.642 (0.563 – 0.733) <0.0001 

Late post-PCV 
(2018) 

28.7 (24.6 – 33.1) 0.603 (0.510 – 0.708) 0.543 (0.455 – 0.644) <0.0001 

NVT pneumococci     
Pre-PCV (2014) 19.6 (16.7 – 22.6) - - - 
Post-PCV (2016-2018) 31.5 (29.1 – 34.1) 1.612 (1.369 – 1.914) 1.233 (1.026 – 1.501) 0.03 

Early post-PCV 
(2016-2017) 

27.1 (24.2 – 30.1) 1.384 (1.155 – 1.666) 1.056 (0.865 – 1.302) 0.6 

Late post-PCV 
(2018) 

40.4 (35.8 – 45.1) 2.066 (1.718 – 2.492) 1.587 (1.297 – 1.961) <0.0001 

NT pneumococci     
Pre-PCV (2014) 4.9 (3.4 – 6.7) - - - 
Post-PCV (2016-2018) 4.1 (3.1 – 5.3) 0.839 (0.557 – 1.280) 0.970 (0.577 – 1.731) 0.9 

Early post-PCV 
(2016-2017) 

3.5 (2.4 – 4.9) 0.711 (0.441 – 1.142) 0.819 (0.460 – 1.517) 0.5 

Late post-PCV 
(2018) 

5.3 (3.4 – 7.8) 1.091 (0.650 – 1.800) 1.275 (0.693 – 2.4414) 0.4 

Pen-NS pneumococci     
Pre-PCV (2014) 57.3 (53.6 – 60.9) - - - 
Post-PCV (2016-2018) 50.7 (48.0 – 53.4) 0.885 (0.816 – 0.961) 0.775 (0.710 – 0.850) <0.0001 

Early post-PCV 
(2016-2017) 

51.8 (48.5 – 55.1) 0.904 (0.827 – 0.989) 0.791 (0.719 – 0.872) <0.0001 

Late post-PCV 
(2018) 

48.6 (43.9 – 53.3) 0.848 (0.755 – 0.948) 0.744 (0.660 – 0.838) <0.0001 

MDR pneumococci     
Pre-PCV (2014) 51.0 (47.3 – 54.7) - - - 
Post-PCV (2016-2018) 44.3 (41.7 – 47.0) 0.867 (0.792 – 0.954) 0.740 (0.670 – 0.823) <0.0001 

Early post-PCV 
(2016-2017) 

44.1 (40.8 – 47.4) 0.864 (0.780 – 0.958) 0.735 (0.659 – 0.823) <0.0001 

Late post-PCV 
(2018) 

44.8 (40.2 – 49.5) 0.878 (0.773 – 0.993) 0.751 (0.658 – 0.856) <0.0001 
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a 
Adjusting for presence of upper respiratory tract infection symptoms, co-habitation with a 

child <5 years, definite recent antibiotic use, enrolment season (January vs August). 

b 
Pre-PCV data consists of two colonisation surveys from January and August 2014. 

CI: confidence interval; VT: vaccine type; NVT: non-vaccine type; NT: non-typeable; NS: 

non-susceptible; MDR: Multi-drug resistant.  
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Table 4. Observed estimates of PCV13 effectiveness based on pre- and post-PCV 

invasive pneumococcal disease (IPD) data in hospitalised children aged <5 years, 1
st
 

January 2012 to 31
st
 December 2018 

 IRR (95% CI) Change in disease rate, % (95% CI) 

All IPD   

Post-PCV (2016-2018) 0.621 (0.364 – 1.029) -37.9 (-63.6 to +2.9) 

Early (2016-2017) 0.649 (0.354 – 1.131) -35.1 (-64.6 to +13.1) 

Late (2018) 0.556 (0.212 – 1.211) -44.4 (-78.8 to +21.1) 

VT IPD   

Post-PCV (2016-2018) 0.577 (0.327 – 0.985) -42.3 (-67.3 to +1.5) 

Early (2016-2017) 0.655 (0.350 – 1.163) -34.5 (-64.9 to +16.3) 

Late (2018) 0.399 (0.120 – 0.992) -60.1 (-88.0 to +0.8) 

NVT IPD   

Post-PCV (2016-2018) 1.185 (0.219 – 6.404) +18.5 (-78.1 to +540.4) 

Early (2016-2017) 0.568 (0.028 – 4.435) -43.2 (-97.2 to +343.5) 

Late (2018) 2.596 (0.342 – 15.666) +159.6 (-65.8 to +1,466.6) 

IRR: Incidence rate ratio; VT: vaccine type; NVT: non-vaccine type. 
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Figure legends 

Figure 1. Pneumococcal colonisation stratified by age category, pneumococcal serotype 

category, and time period 

VT; vaccine type; NVT: non-vaccine type; NT: non-typeable. Results for 2014 are the 

combined data from January and August surveys. 

 

 

Figure 2. Pneumococcal serotype colonisation, by proportion of total isolates in each 

time period 

Light grey lines show detected serotypes as a proportion of all isolates from that year, with a 

single serotype highlighted in colour (green = vaccine type; blue = non-vaccine type; red = 

non-typeable). The vertical black dashed line represents PCV13 introduction. 

 

 

Figure 3. Observed and modelled IPD incidence rate ratios (IRR), late post-PCV (2018) 

compared to pre-PCV (2012-2014) time period 

VT: vaccine type; NVT: non-vaccine type. For clarity, the upper bound of the confidence 

interval for the observed NVT IRR has been truncated at 8 (actual value 15.6). The dashed 

horizontal line indicates an IRR of 1. 
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Figure 1 
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Figure 2 
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Figure 3 
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