7 research outputs found

    Phage Associated Bacteriocins Reveal a Novel Mechanism for Bacteriocin Diversification in Klebsiella

    No full text
    Abstract. Ninety-six isolates of Klebsiella pneumoniae and K. oxytoca were recovered from wild mammals in Australia. 14.6% of these bacteria produce killing phenotypes that suggest the production of bacteriocin toxins. Cloning and sequencing of the gene clusters encoding two of these killing phenotypes revealed two instances of a bacteriocin associated with a bacteriophage gene, the first such genetic organization described. The newly identified klebicin C gene cluster was discovered in both K. pneumoniae and K. oxytoca. The newly identified klebicin D gene cluster was detected in K. oxytoca. Protein sequence comparisons and phylogenetic inference suggest that klebicin C is most closely related to the rRNase group of colicins (such as colicin E4), while klebicin D is most closely related to the tRNase group of colicins (such as colicin D). The klebicin C and D gene clusters have similar genetic and regulatory organizations. In both cases, an operon structure is inferred consisting of a phage-associated open reading frame and klebicin activity and associated immunity genes. This novel bacteriophage/bacteriocin organization may provide a novel mechanism for the generation of bacteriocin diversity in Klebsiella

    Subsurface Clade of Geobacteraceae that Predominates in a Diversity of Fe(III)-Reducing Subsurface Environments

    No full text
    There are distinct differences in the physiology of Geobacter species available in pure culture. Therefore, to understand the ecology of Geobacter species in subsurface environments, it is important to know which species predominate. Clone libraries were assembled with 16S rRNA genes and transcripts amplified from three subsurface environments in which Geobacter species are known to be important members of the microbial community: (1) a uranium-contaminated aquifer located in Rifle, CO, USA undergoing in situ bioremediation; (2) an acetate-impacted aquifer that serves as an analog for the long-term acetate amendments proposed for in situ uranium bioremediation and (3) a petroleum-contaminated aquifer in which Geobacter species play a role in the oxidation of aromatic hydrocarbons coupled with the reduction of Fe(III). The majority of Geobacteraceae 16S rRNA sequences found in these environments clustered in a phylogenetically coherent subsurface clade, which also contains a number of Geobacter species isolated from subsurface environments. Concatamers constructed with 43 Geobacter genes amplified from these sites also clustered within this subsurface clade. 16S rRNA transcript and gene sequences in the sediments and groundwater at the Rifle site were highly similar, suggesting that sampling groundwater via monitoring wells can recover the most active Geobacter species. These results suggest that further study of Geobacter species in the subsurface clade is necessary to accurately model the behavior of Geobacter species during subsurface bioremediation of metal and organic contaminants
    corecore