21 research outputs found

    Concomitant deletion of Ptpn6 and Ptpn11 in T cells fails to improve anticancer responses

    Get PDF
    Anticancer T cells acquire a dysfunctional state characterized by poor effector function and expression of inhibitory receptors, such as PD-1. Blockade of PD-1 leads to T cell reinvigoration and is increasingly applied as an effective anticancer treatment. Recent work challenged the commonly held view that the phosphatase PTPN11 (known as SHP-2) is essential for PD-1 signaling in T cells, suggesting functional redundancy with the homologous phosphatase PTPN6 (SHP-1). Therefore, we investigated the effect of concomitant Ptpn6 and Ptpn11 deletion in T cells on their ability to mount antitumour responses. In vivo data show that neither sustained nor acute Ptpn6/11 deletion improves T cell-mediated tumor control. Sustained loss of Ptpn6/11 also impairs the therapeutic effects of anti-PD1 treatment. In vitro results show that Ptpn6/11-deleted CD8(+) T cells exhibit impaired expansion due to a survival defect and proteomics analyses reveal substantial alterations, including in apoptosis-related pathways. These data indicate that concomitant ablation of Ptpn6/11 in polyclonal T cells fails to improve their anticancer properties, implying that caution shall be taken when considering their inhibition for immunotherapeutic approaches

    Tuning MPL signaling to influence hematopoietic stem cell differentiation and inhibit essential thrombocythemia progenitors

    Get PDF
    Thrombopoietin (TPO) and the TPO-receptor (TPO-R, or c-MPL) are essential for hematopoietic stem cell (HSC) maintenance and megakaryocyte differentiation. Agents that can modulate TPO-R signaling are highly desirable for both basic research and clinical utility. We developed a series of surrogate protein ligands for TPO-R, in the form of diabodies (DBs), that homodimerize TPO-R on the cell surface in geometries that are dictated by the DB receptor binding epitope, in effect "tuning" downstream signaling responses. These surrogate ligands exhibit diverse pharmacological properties, inducing graded signaling outputs, from full to partial TPO agonism, thus decoupling the dual functions of TPO/TPO-R. Using single-cell RNA sequencing and HSC self-renewal assays we find that partial agonistic diabodies preserved the stem-like properties of cultured HSCs, but also blocked oncogenic colony formation in essential thrombocythemia (ET) through inverse agonism. Our data suggest that dampening downstream TPO signaling is a powerful approach not only for HSC preservation in culture, but also for inhibiting oncogenic signaling through the TPO-R

    Pleiotropic Effects of Sox2 during the Development of the Zebrafish Epithalamus

    Get PDF
    The zebrafish epithalamus is part of the diencephalon and encompasses three major components: the pineal, the parapineal and the habenular nuclei. Using sox2 knockdown, we show here that this key transcriptional regulator has pleiotropic effects during the development of these structures. Sox2 negatively regulates pineal neurogenesis. Also, Sox2 is identified as the unknown factor responsible for pineal photoreceptor prepatterning and performs this function independently of the BMP signaling. The correct levels of sox2 are critical for the functionally important asymmetrical positioning of the parapineal organ and for the migration of parapineal cells as a coherent structure. Deviations from this strict control result in defects associated with abnormal habenular laterality, which we have documented and quantified in sox2 morphants

    Etudes fonctionnelles de Tyk2 dans la voie de signalisation de l'IFNα: analyse d'un nouvel interacteur et d'une mutation activatrice

    No full text
    Tyk2 is a member of the Jak family of tyrosine kinases (Jak1, Jak2, Jak3 and Tyk2), which are indispensable components of -helical cytokine signaling cascades. Receptors for - helical cytokines are mostly made of two transmembrane subunits that associate with Jaks. Ligand bridging of two receptor chains brings together the associated Jaks, enabling their activation by transphosphorylation. Activated Jaks phosphorylate the STATs (Signal Transducer and Activator of Transcription) which translocate into the nucleus to drive gene expression. The Jaks have an N-terminal FERM (band 4.1-ezrin-radixin-moesin) domain, followed by an "SH2-like" domain and two kinase domains: a kinase-like (KL) domain and the catalytic tyrosine-kinase domain. The FERM and SH2-like domains are necessary for receptor binding. The KL domain has no catalytic activity, but plays an important regulatory role. The laboratory is particularly interested in the type I interferon (IFN/) receptor, made of two subunits IFNAR1 and IFNAR2, which bind Tyk2 and Jak1, respectively. During the first part of my thesis, I analyzed a new Tyk2 interacting protein, Pot1 (Partner of Tyk2). Pot1 was isolated in a yeast two-hybrid screen using the Tyk2 FERM domain as bait. To assess the role of Pot1 in IFNsignaling, I monitored IFN-induced response in Pot1-depleted cells by measuring STAT phosphorylation and the induction of a reporter gene. These experiments showed that, in this system, Pot1 depletion had no effect on IFN-induced signaling. A two-hybrid screen was performed with Pot1 as bait. Among the 14 proteins found with high interaction confidence, we focused on GIT1 (G protein-coupled receptor kinase interactor 1), an adaptor protein implicated in a number of cellular processes, like cell migration, receptor internalization and EGF and angiotensin II signaling. To analyze the role of GIT1 in IFNsignaling, I monitored IFN-induced receptor internalization, STAT phosphorylation and the induction of a reporter gene in GIT1-depleted cells. The results obtained allow us to exclude a role for GIT1 in type I IFN signaling. During the second part of my thesis, I analyzed the effect of the V678F substitution on Tyk2 function. This mutation, located in the KL domain, corresponds to the V617F mutation of Jak2 found at the origin of Polycythemia vera. To study the effect of the V678F mutation on Tyk2 activity, I reconstituted Tyk2-deficient cells with Tyk2 WT or the V678F mutant and monitored IFN-induced response. Our results show that the V678F mutation augments basal Tyk2 kinase activity measured in vitro. This gain-of-function leads to an increase of the basal STAT3 phosphorylation level, but has no effect on IFN-induced Jak1 and STAT1/2/5 phosphorylation. As opposed to Jak2, Tyk2 has been implicated only in signaling via heterodimeric receptor complexes. Interestingly, it has been shown that Jak2V617F needs the coexpression of a cognate homodimeric receptor to fully exert its transforming activity in the BaF3 cellular model system. Therefore, we analyzed the effect of Tyk2V678F on signaling via an artificial homodimeric receptor. To this end, we used Tyk2-deficient cells that express a chimeric receptor containing the extracellular domain of erythropoietin receptor fused to the intracellular region of IFNAR1. These cells were stably reconstituted with Tyk2WT or the V678F mutant. In this context, Tyk2V678F confers ligand hypersensitivity as seen by STAT1/3/5 phosphorylation. Moreover, the ensemble of these data point to STAT3 as a preferred substrate of Tyk2.Les récepteurs des cytokines à structure α-hélicoïdale sont pour la plupart composés de deux sous-unités transmembranaires associées aux protéine tyrosine kinases de la famille Janus (Tyk2, Jak1, Jak2 et Jak3). La fixation de la cytokine à son récepteur induit une dimérisation des sous-unités ce qui entraîne l'activation des Jak par transphosphorylation. Les Jaks ainsi activées phosphorylent les facteurs de transcription STAT (Signal Transducer and Activator of Transcription) qui transloquent dans le noyau. Les tyrosine kinases Jak présentent en position N-terminale un domaine FERM (4.1-ezrin-radixin-moesin), suivi par un domaine dit 'SH2-like' et deux domaines kinases: un domaine dit 'kinase-like' (KL) à fonction régulatrice et un domaine catalytique de type tyrosine kinase en position C-terminale. L'association au récepteur se fait par la région N-terminale. Le laboratoire s'intéresse particulièrement au récepteur de l'interféron de type I (IFNα/β) composé de deux chaînes, IFNAR1 et IFNAR2, et aux kinases Tyk2 et Jak1 auxquels elles s'associent respectivement. La première partie de ma thèse a porté sur l'étude d'un nouveau partenaire de Tyk2, la protéine Pot1 (Partner of Tyk2) et de son rôle potentiel dans la voie de signalisation de l'IFNα. Plusieurs ADNc partiels de Pot1 avaient été isolés dans le laboratoire par criblage double-hybride utilisant comme appât le domaine FERM de Tyk2. Un ADNc complet de Pot1 avait été reconstruit donnant lieu à une protéine de 1003 acides aminés (aa). L'interaction entre cette protéine et les domaines FERM de Tyk2 et de Jak1 avait été confirmée par des expériences in vitro. L'analyse par northern blot de Pot1 montre une expression faible dans plusieurs tissus. L'étude de la localisation de la protéine Pot1 surexprimée avait montré une localisation cytoplasmique au niveau de vésicules non identifiées. Un des aspects de mon travail sur Pot1 a été de déterminer si l'ADNc reconstruit dans le laboratoire, appelé 'lab cDNA', correspond à un vrai transcrit. En effet, les banques de données recensent plusieurs autres transcrits issus du gène Pot1, avec une portion 3' commune et identique au 'lab cDNA', mais une région 5' divergente. Ces transcrits donnent lieu à deux isoformes ne possédant pas les 200 aa ou 250 aa en position N-terminale par rapport à la protéine de référence codée par le 'lab cDNA'. De plus, l'unique protéine murine (mPot1) recensée dans les banques de données ne possède pas les 100 aa en N-terminal par rapport à la protéine humaine de référence. Pour analyser l'expression de différents transcrits, j'ai amplifié l'ADNc de cellules humaines HEK293T avec des primers me permettant de 12 distinguer les différents transcrits. Ces expériences ont permis de confirmer l'expression du transcrit correspondant au 'lab cDNA' et codant pour une isoforme de 1003 aa (112 kDa). Par la suite j'ai étudié la localisation de la protéine Pot1 murine dans les cellules surexprimant mPot1. J'ai observé que mPot1 se trouve dans des vésicules cytoplasmiques, tout comme la protéine humaine, et semble être associée à la membrane de ces vésicules. Toutefois, nous ne pouvons pas écarter la possibilité de localisation inadéquate dû à la forte surexpression de mPot1. Il sera nécessaire de confirmer cette observation par l'analyse de la localisation de la protéine endogène. A ce jour les anticorps disponibles ne permettent pas sa détection. Afin d'évaluer le rôle de Pot1 dans la voie de signalisation de l'IFNα, j'ai mesuré la réponse à l'IFNα de cellules déplétées en Pot1 par interférence à l'ARN. J'ai mesuré la phosphorylation des protéines STAT et l'induction d'un gène rapporteur. Ces expériences ont montré que, dans ce système, la diminution de l'expression de Pot1 n'a pas d'effet sur la signalisation par l'IFNα. Afin d'éclairer la fonction de Pot1, de nouveaux interacteurs de Pot1 ont été recherchés par criblage double-hybride. Parmi les 14 protéines identifiées à haut niveau de confiance, nous nous sommes particulièrement intéressés à GIT1 (G protein-coupled receptor kinase interactor), une protéine adaptatrice impliquée dans de nombreux processus cellulaires, tels que l'internalisation de récepteurs, la signalisation induite par l'EGF (epidermal growth factor) et l'angiotensine II ainsi que la migration cellulaire. Afin d'analyser le rôle éventuel de GIT1 dans la signalisation par l'IFNα, j'ai mesuré plusieurs paramètres (internalisation des sous-unités du récepteur, phosphorylation des STAT, induction d'un gène rapporteur) dans des cellules surexprimant ou déplétées en GIT1. Les résultats obtenus ont écarté l'hypothèse d'une implication de GIT1 dans la réponse transcriptionnelle à l'IFNα. La deuxième partie de mon travail a porté sur l'étude de la mutation V678F introduite dans la protéine Tyk2.Cette substitution est située dans le domaine KL et correspond à la mutation V617F de Jak2, décrite comme étant à l'origine de la Polycythemia vera. La P. vera, ou maladie de Vaquez, est une maladie myéloproliférative caractérisée par une hyperproduction d'érythrocytes et leur hypersensibilité à l'érythropoiétine (Epo). Il a été montré que la mutation V617F induit une augmentation de l'activité kinase de base de Jak2. De même, Jak2V617F induit une prolifération indépendante de facteurs de croissance des cellules murines BaF3, confirmant son potentiel transformant. Toutefois, il a été montré que 13 Jak2V617F nécessite la coexpression d'un récepteur homodimérique, tel que récepteur à l'Epo, pour exercer une activité transformante maximale. Les questions que nous nous sommes posées sont les suivantes: 1) quel est l'effet de la substitution V678F sur l'activité catalytique de Tyk2? 2) quel est l'effet du mutant Tyk2V678F sur la signalisation par l'IFNα? 3) le mutant Tyk2V678F aurait-il un effet plus marquant ou délétère s'il est placé dans un contexte de récepteur homodimérique? A cet effet, nous avons établi, à partir de cellules Tyk2-déficientes, des clones stables exprimant la protéine sauvage ou mutante. Nos résultats montrent que la mutation V678F augmente in vivo et in vitro la capacité de Tyk2 à s'auto-phosphoryler. Par la suite, j'ai mesuré la phosphorylation sur tyrosine des protéines STAT en réponse à l'IFNα. Aucune différence de niveau de phosphorylation de STAT1/2/5 n'a pu être décélée entre les cellules exprimant la protéine sauvage et les cellules exprimant le mutant Tyk2V678F. Par contre, j'ai mis en évidence une phosphorylation basale de STAT3 augmentée en présence de Tyk2V678F. Pour déterminer si cette phosphorylation basale de STAT3 corrèle avec une augmentation de son activité transcriptionnelle, j'ai analysé l'activité transcriptionelle de STAT3 à l'aide d'un gène rapporteur. Les résultats montrent que, dans les cellules exprimant le mutant Tyk2V678F, STAT3 possède une activité transcriptionelle augmentée. Afin d'étudier l'effet du mutant Tyk2V678F placé dans un contexte de récepteur homodimérique, j'ai utilisé des cellules exprimant un récepteur chimérique comprenant l'ectodomaine du récepteur à l'Epo fusionné aux régions transmembranaire et cytoplasmique de la chaîne IFNAR1 (EpoR/R1). A l'aide de ces cellules, j'ai pu confirmer que l'expression du mutant Tyk2V678F engendre une phosphorylation basale de STAT3. De plus, dans ce contexte de récepteur homodimérique, suite à stimulation par le ligand Epo, le mutant Tyk2V678F induit une augmentation ultérieure de la phosphorylation de STAT1, STAT3 et STAT5. Nous avons aussi voulu comparer directement le niveau de phosphorylation de Tyk2V678F et de STAT3 dans différents contextes de récepteurs. Les résultats obtenus montrent que la protéine Tyk2V678F est plus phosphorylée basalement dans les cellules exprimant le récepteur homodimérique EpoR/R1. Ceci est probablement la conséquence d'une transphosphorylation plus efficace de deux kinases mutantes juxtaposées. Par contre, la phosphorylation de STAT3 ne corrèle pas directement avec le niveau d'expression du mutant Tyk2V678F, ce qui suggère une absence de corrélation linéaire entre l'activation de Tyk2 et et de STAT3. 14 En conclusion, nous avons montré que la mutation V678F augmente l'activité catalytique de Tyk2. De plus, le mutant acquiert la capacité de phosphoryler STAT3 et ceci en absence du ligand. Cependant, le mutant Tyk2V678F n'affecte pas la réponse à l'IFNα en terme de phosphorylation de Jak1, STAT1 et STAT2. Ces résultats démontrent une interaction fonctionnelle étroite entre Tyk2 et STAT3. Etant donné que STAT3 constitutivement actif exerce des propriétés oncogéniques et que STAT3 est phosphorylé dans de nombreux cancers, il est possible de prédire aussi un rôle oncogénique pour Tyk2 constitutivement active. Récemment, il a été suggéré qu'un polymorphisme de Tyk2, P1104A, pourrait être associé à la présence de tumeurs. Cette substitution est située dans le domaine tyrosine kinase au sein d'une hélice α présente uniquement dans les membres de la famille Jak. Nous avons introduit cette mutation dans Tyk2 et analysé son effet sur l'activité kinase. Les résultats montrent que le mutant Tyk2P1104A est incapable de s'autophosphoryler in vitro. Toutefois, en réponse à l'IFNα, aucune différence du niveau de phosphorylation de STAT1/2 /3 n'est décélée dans les cellules exprimant Tyk2P1104A par rapport aux cellules exprimant la protéine sauvage. Ces résultats suggèrent que la mutation P1104A abolit la capacité autophosphorylante de l'enzyme, mais n'affecte pas l'activité enzymatique induite par l' l'IFNα envers d'autres substrats in vivo. Ces résultats préliminaires devront être renforcés par des études plus approfondies de l'effet de la mutation P1104A sur la fonction que Tyk2 exerce au sein du récepteur de l'IFNα/β ainsi qu'au sein d'autres récepteurs de cytokines de la réponse immune

    The Stat3-activating Tyk2 V678F mutant does not up-regulate signaling through the type I interferon receptor but confers ligand hypersensitivity to a homodimeric receptor

    No full text
    Tyk2 is a Jak family member involved in cytokine signaling through heterodimeric-type receptors. Here, we analyzed the impact of the Val(678)-to-Phe substitution on Tyk2 functioning. This mutation is homologous to the Jak2 Val(617)-to-Phe mutation, implicated in myeloproliferative disorders. We studied ligand-independent and ligand-dependent Jak/Stat signaling in cells expressing Tyk2 V678F. Moreover, the effect of Tyk2 V678F was monitored in the context of the native heterodimeric interferon alpha receptor and in the context of a homodimeric receptor chimera, EpoR/R1, containing the ectodomain of the erythropoietin receptor. We show that Tyk2 V678F has increased catalytic potential in vivo and in vitro and more so when it is anchored to the homodimeric receptor. Tyk2 V678F leads to constitutive Stat3 phosphorylation but has no notable effect on the canonical interferon alpha-induced signaling. However, if anchored to the homodimeric EpoR/R1, the mutant confers to the cell increased sensitivity to erythropoietin. Thus, despite the catalytic gain of function of Tyk2 V678F, the effect on ligand-induced signaling is manifest only when two mutant enzymes are juxtaposed via the homodimeric receptor

    Two Rare Disease-Associated Tyk2 Variants Are Catalytically Impaired but Signaling Competent.

    No full text
    International audienceTyk2 belongs to the Janus protein tyrosine kinase family and is involved in signaling of immunoregulatory cytokines (type I and III IFNs, IL-6, IL-10, and IL-12 families) via its interaction with shared receptor subunits. Depending on the receptor complex, Tyk2 is coactivated with either Jak1 or Jak2, but a detailed molecular characterization of the interplay between the two enzymes is missing. In human populations, the Tyk2 gene presents high levels of genetic diversity with >100 nonsynonymous variants being detected. In this study, we characterized two rare Tyk2 variants, I684S and P1104A, which have been associated with susceptibility to autoimmune disease. Specifically, we measured their in vitro catalytic activity and their ability to mediate Stat activation in fibroblasts and genotyped B cell lines. Both variants were found to be catalytically impaired but rescued signaling in response to IFN-α/β, IL-6, and IL-10. These data, coupled with functional study of an engineered Jak1 P1084A, support a model of nonhierarchical activation of Janus kinases in which one catalytically competent Jak is sufficient for signaling provided that its partner behaves as proper scaffold, even if inactive. Through the analysis of IFN-α and IFN-γ signaling in cells with different Jak1 P1084A levels, we also illustrate a context in which a hypomorphic Jak can hamper signaling in a cytokine-specific manner. Given the multitude of Tyk2-activating cytokines, the cell context-dependent requirement for Tyk2 and the catalytic defect of the two disease-associated variants studied in this paper, we predict that these alleles are functionally significant in complex immune disorders

    Knockdown of the zebrafish ortholog of the retinitis pigmentosa 2 (RP2) gene results in retinal degeneration

    No full text
    PURPOSE. The authors investigated the expression and function of the zebrafish ortholog of the retinitis pigmentosa 2 (RP2) gene.METHODS. Zebrafish RP2 (ZFRP2) cDNA was isolated from adult eye mRNA by reverse transcription-polymerase chain reaction (RT-PCR). Gene expression was examined by RT-PCR. The deduced peptide sequence was aligned with RP2 orthologues from different species. Translational suppression (knockdown) of zebrafish RP2 was carried out by antisense morpholino-injection. The phenotype of ZFRP2 knockdown morphants was characterized by immunohistology and histology. Human wild-type and mutant RP2 mRNAs were coinjected with ZFRP2 morpholinos to test whether human RP2 mRNA could rescue ZFRP2 knockdown phenotypes.RESULTS. ZFRP2 encodes a protein of 376 amino acids containing an N-terminal tubulin folding cofactor C-like domain and a C-terminal nucleoside diphosphate kinase-like domain. It shares 63% to 65% amino acid identity with human, mouse and bovine RP2. RP2 is expressed at the earliest stages of zebrafish development and persists into adulthood. Knockdown of RP2 in zebrafish causes a curved body axis and small eye phenotype, associated with increased cell death throughout the retina. Human wild-type RP2 mRNA could rescue the body curvature phenotype of ZFRP2 morphants, and the eye size of the resultant morphants was significantly increased over that of morphants in which ZFRP2 had been depleted.CONCLUSIONS. Zebrafish RP2 is widely expressed throughout development. ZFRP2 knockdown caused retinal degeneration in zebrafish. Human RP2 could partially rescue the small eye phenotype of ZFRP2 morphants. (Invest Ophthalmol Vis Sci. 2011;52:2960-2966) DOI:10.1167/iovs.10-680

    Suboptimal doses of <i>sox2</i> morpholinos result in increased number of PhRs and abnormal positioning of the parapineal organ.

    No full text
    a<p>Average number of PhRs (± standard error, number of embryos analyzed).</p>b<p>Percentage of embryos with left, right or bilateral parapineal projections (number of embryos in each category).</p
    corecore