300 research outputs found

    Characterization and quantitative topographical distribution of salmon calcitonin-binding sites in rat kidney sections

    Get PDF
    AbstractRenal binding sites for labelled salmon calcitonin (sCT) were studied using cryostat sections and autoradiography. Increasing concentrations of unlabelled sCT inhibited 125I-sCT binding. 125I-sCT bound to a single site with a Kd of 2 nM and a number of sites of 220 fmolmg protein. Mammalian calcitonins had low affinities and peptides unrelated to CT were devoid of any significant affinity for 125I-sCT receptors. Auto-radiograms disclosed a high concentration of 125I-sCT receptors mainly located in the outer medulla and heterogeneously in the renal cortex. The distribution of specific binding sites is in agreement with the current concepts of renal action of calcitonin

    Structure of chicken calcitonin predicted by partial nucleotide sequence of its precursor

    Get PDF
    AbstractDNA complementary to chicken ultimobranchial gland mRNA was cloned into the Pst I site of plasmid vector pBR322. A plasmid was selected by DNA-mRNA hybridization. We report here the partial nucleotide sequence of chicken calcitonin mRNA and the deduced complete amino acid sequence of chicken calcitonin

    Fructan and its relationship to abiotic stress tolerance in plants

    Get PDF
    Numerous studies have been published that attempted to correlate fructan concentrations with freezing and drought tolerance. Studies investigating the effect of fructan on liposomes indicated that a direct interaction between membranes and fructan was possible. This new area of research began to move fructan and its association with stress beyond mere correlation by confirming that fructan has the capacity to stabilize membranes during drying by inserting at least part of the polysaccharide into the lipid headgroup region of the membrane. This helps prevent leakage when water is removed from the system either during freezing or drought. When plants were transformed with the ability to synthesize fructan, a concomitant increase in drought and/or freezing tolerance was confirmed. These experiments indicate that besides an indirect effect of supplying tissues with hexose sugars, fructan has a direct protective effect that can be demonstrated by both model systems and genetic transformation

    Dissection of a QTL Hotspot on Mouse Distal Chromosome 1 that Modulates Neurobehavioral Phenotypes and Gene Expression

    Get PDF
    A remarkably diverse set of traits maps to a region on mouse distal chromosome 1 (Chr 1) that corresponds to human Chr 1q21–q23. This region is highly enriched in quantitative trait loci (QTLs) that control neural and behavioral phenotypes, including motor behavior, escape latency, emotionality, seizure susceptibility (Szs1), and responses to ethanol, caffeine, pentobarbital, and haloperidol. This region also controls the expression of a remarkably large number of genes, including genes that are associated with some of the classical traits that map to distal Chr 1 (e.g., seizure susceptibility). Here, we ask whether this QTL-rich region on Chr 1 (Qrr1) consists of a single master locus or a mixture of linked, but functionally unrelated, QTLs. To answer this question and to evaluate candidate genes, we generated and analyzed several gene expression, haplotype, and sequence datasets. We exploited six complementary mouse crosses, and combed through 18 expression datasets to determine class membership of genes modulated by Qrr1. Qrr1 can be broadly divided into a proximal part (Qrr1p) and a distal part (Qrr1d), each associated with the expression of distinct subsets of genes. Qrr1d controls RNA metabolism and protein synthesis, including the expression of ∼20 aminoacyl-tRNA synthetases. Qrr1d contains a tRNA cluster, and this is a functionally pertinent candidate for the tRNA synthetases. Rgs7 and Fmn2 are other strong candidates in Qrr1d. FMN2 protein has pronounced expression in neurons, including in the dendrites, and deletion of Fmn2 had a strong effect on the expression of few genes modulated by Qrr1d. Our analysis revealed a highly complex gene expression regulatory interval in Qrr1, composed of multiple loci modulating the expression of functionally cognate sets of genes

    Effects of adaptation to sea water, 170% sea water and to fresh water on activities and subcellular distribution of branchial Na + −K + -ATPase, low- and high affinity Ca ++ -ATPase, and ouabain-insensitive ATPase in Gillichthys mirabilis

    Full text link
    1. Branchial activities of Na + −K + -ATPase, ouabain-insensitive ATPase, (Mg ++ -ATPase) and Ca ++ -ATPase were measured in Gillichthys mirabilis after adaptation to salinities ranging from 170% SW to FW. Stabilities of these activities against freezing and deoxycholate solubilization and the temperature-dependence of activity rates were also investigated. Subcellular distribution and some kinetic properties of these activities, and of SDH were compared in branchial tissues of fish adapted to 170% SW and to FW.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47126/1/360_2004_Article_BF00782593.pd

    Advanced Instrumentation of Frequency Modulation AFM for Subnanometer-Scale 2D/3D Measurements at Solid-Liquid Interfaces

    Get PDF
    Since the first demonstration of true atomic-resolution imaging by frequency modulation atomic force microscopy (FM-AFM) in liquid, the method has been used for imaging subnanometer-scale structures of various materials including minerals, biological systems and other organic molecules. Rencetly, there have been further advancements in theFM-AFMinstrumentation. Three-dimensional (3D) force measurement techniques are proposed for visualizing 3D hydration structures formed at a solid-liquid interface. Thesemethods further enabled to visualize 3D distributions of flexible surface structures at interfaces between soft materials andwater. Furthermore, the fundamental performance such as force sensitivity and operation speed have been significantly improved using a small cantilever and high-speed phase detector. These technical advancements enabled direct visualization of atomic-scale interfacial phenomena at 1 frame/s. In this chapter, these recent advancements in the FM-AFM instrumentation and their applications to the studies on various interfacial phenomena are presented. © Springer International Publishing Switzerland 201
    corecore