543 research outputs found

    Sampling a Littoral Fish Assemblage: Comparison of Small-Mesh Fyke Netting and Boat Electrofishing

    Get PDF
    We compared small-mesh (4-mm) fyke netting and boat electrofishing for sampling a littoral fish assemblage in Muskegon Lake, Michigan. We hypothesized that fyke netting selects for small-bodied fishes and electrofishing selects for large-bodied fishes. Three sites were sampled during May (2004 and 2005), July (2005 only), and September (2004 and 2005). We found that the species composition of captured fish differed considerably between fyke netting and electrofishing based on nonmetric multidimensional scaling (NMDS). Species strongly associated with fyke netting (based on NMDS and relative abundance) included the brook silverside Labidesthes sicculus, banded killifish Fundulus diaphanus, round goby Neogobius melanostomus, mimic shiner Notropis volucellus, and bluntnose minnow Pimephales notatus, whereas species associated with electrofishing included the Chinook salmon Oncorhynchus tshawytscha, catostomids (Moxostoma spp. and Catostomus spp.), freshwater drum Aplodinotus grunniens, walleye Sander vitreus, gizzard shad Dorosoma cepedianum, and common carp Cyprinus carpio. The total length of fish captured by electrofishing was 12.8 cm (95% confidence interval ¼ 5.5– 17.2 cm) greater than that of fish captured by fyke netting. Size selectivity of the gears contributed to differences in species composition of the fish captured, supporting our initial hypothesis. Thus, small-mesh fyke nets and boat electrofishers provided complementary information on a littoral fish assemblage. Our results support use of multiple gear types in monitoring and research surveys of fish assemblages. Copyright by the American Fisheries Society 2007, Originally published in the North American Journal of Fisheries Management 27: 825-831, 2007

    Superform formulation for vector-tensor multiplets in conformal supergravity

    Full text link
    The recent papers arXiv:1110.0971 and arXiv:1201.5431 have provided a superfield description for vector-tensor multiplets and their Chern-Simons couplings in 4D N = 2 conformal supergravity. Here we develop a superform formulation for these theories. Furthermore an alternative means of gauging the central charge is given, making use of a deformed vector multiplet, which may be thought of as a variant vector-tensor multiplet. Its Chern-Simons couplings to additional vector multiplets are also constructed. This multiplet together with its Chern-Simons couplings are new results not considered by de Wit et al. in hep-th/9710212.Comment: 28 pages. V2: Typos corrected and references updated; V3: References updated and typo correcte

    KP solitons in shallow water

    Full text link
    The main purpose of the paper is to provide a survey of our recent studies on soliton solutions of the Kadomtsev-Petviashvili (KP) equation. The classification is based on the far-field patterns of the solutions which consist of a finite number of line-solitons. Each soliton solution is then defined by a point of the totally non-negative Grassmann variety which can be parametrized by a unique derangement of the symmetric group of permutations. Our study also includes certain numerical stability problems of those soliton solutions. Numerical simulations of the initial value problems indicate that certain class of initial waves asymptotically approach to these exact solutions of the KP equation. We then discuss an application of our theory to the Mach reflection problem in shallow water. This problem describes the resonant interaction of solitary waves appearing in the reflection of an obliquely incident wave onto a vertical wall, and it predicts an extra-ordinary four-fold amplification of the wave at the wall. There are several numerical studies confirming the prediction, but all indicate disagreements with the KP theory. Contrary to those previous numerical studies, we find that the KP theory actually provides an excellent model to describe the Mach reflection phenomena when the higher order corrections are included to the quasi-two dimensional approximation. We also present laboratory experiments of the Mach reflection recently carried out by Yeh and his colleagues, and show how precisely the KP theory predicts this wave behavior.Comment: 50 pages, 25 figure

    Effective supergravity descriptions of superstring cosmology

    Full text link
    This text is a review of aspects of supergravity theories that are relevant in superstring cosmology. In particular, it considers the possibilities and restrictions for `uplifting terms', i.e. methods to produce de Sitter vacua. We concentrate on N=1 and N=2 supergravities, and the tools of superconformal methods, which clarify the structure of these theories. Cosmic strings and embeddings of target manifolds of supergravity theories in others are discussed in short at the end.Comment: 12 pages, contribution to the proceedings of the 2nd international conference on Quantum Theories and Renormalization Group in Gravity and Cosmology, Barcelona, July 11-15, 2006, Journal of Physics

    Asymptotic models for the generation of internal waves by a moving ship, and the dead-water phenomenon

    Full text link
    This paper deals with the dead-water phenomenon, which occurs when a ship sails in a stratified fluid, and experiences an important drag due to waves below the surface. More generally, we study the generation of internal waves by a disturbance moving at constant speed on top of two layers of fluids of different densities. Starting from the full Euler equations, we present several nonlinear asymptotic models, in the long wave regime. These models are rigorously justified by consistency or convergence results. A careful theoretical and numerical analysis is then provided, in order to predict the behavior of the flow and in which situations the dead-water effect appears.Comment: To appear in Nonlinearit

    Measurement of the diffractive structure function in deep inelastic scattering at HERA

    Full text link
    This paper presents an analysis of the inclusive properties of diffractive deep inelastic scattering events produced in epep interactions at HERA. The events are characterised by a rapidity gap between the outgoing proton system and the remaining hadronic system. Inclusive distributions are presented and compared with Monte Carlo models for diffractive processes. The data are consistent with models where the pomeron structure function has a hard and a soft contribution. The diffractive structure function is measured as a function of \xpom, the momentum fraction lost by the proton, of β\beta, the momentum fraction of the struck quark with respect to \xpom, and of Q2Q^2. The \xpom dependence is consistent with the form \xpoma where a = 1.30 ± 0.08 (stat)  0.14+ 0.08 (sys)a~=~1.30~\pm~0.08~(stat)~^{+~0.08}_{-~0.14}~(sys) in all bins of β\beta and Q2Q^2. In the measured Q2Q^2 range, the diffractive structure function approximately scales with Q2Q^2 at fixed β\beta. In an Ingelman-Schlein type model, where commonly used pomeron flux factor normalisations are assumed, it is found that the quarks within the pomeron do not saturate the momentum sum rule.Comment: 36 pages, latex, 11 figures appended as uuencoded fil

    Measurement of inclusive D*+- and associated dijet cross sections in photoproduction at HERA

    Get PDF
    Inclusive photoproduction of D*+- mesons has been measured for photon-proton centre-of-mass energies in the range 130 < W < 280 GeV and a photon virtuality Q^2 < 1 GeV^2. The data sample used corresponds to an integrated luminosity of 37 pb^-1. Total and differential cross sections as functions of the D* transverse momentum and pseudorapidity are presented in restricted kinematical regions and the data are compared with next-to-leading order (NLO) perturbative QCD calculations using the "massive charm" and "massless charm" schemes. The measured cross sections are generally above the NLO calculations, in particular in the forward (proton) direction. The large data sample also allows the study of dijet production associated with charm. A significant resolved as well as a direct photon component contribute to the cross section. Leading order QCD Monte Carlo calculations indicate that the resolved contribution arises from a significant charm component in the photon. A massive charm NLO parton level calculation yields lower cross sections compared to the measured results in a kinematic region where the resolved photon contribution is significant.Comment: 32 pages including 6 figure

    Measurement of Jet Shapes in Photoproduction at HERA

    Full text link
    The shape of jets produced in quasi-real photon-proton collisions at centre-of-mass energies in the range 134277134-277 GeV has been measured using the hadronic energy flow. The measurement was done with the ZEUS detector at HERA. Jets are identified using a cone algorithm in the ηϕ\eta - \phi plane with a cone radius of one unit. Measured jet shapes both in inclusive jet and dijet production with transverse energies ETjet>14E^{jet}_T>14 GeV are presented. The jet shape broadens as the jet pseudorapidity (ηjet\eta^{jet}) increases and narrows as ETjetE^{jet}_T increases. In dijet photoproduction, the jet shapes have been measured separately for samples dominated by resolved and by direct processes. Leading-logarithm parton-shower Monte Carlo calculations of resolved and direct processes describe well the measured jet shapes except for the inclusive production of jets with high ηjet\eta^{jet} and low ETjetE^{jet}_T. The observed broadening of the jet shape as ηjet\eta^{jet} increases is consistent with the predicted increase in the fraction of final state gluon jets.Comment: 29 pages including 9 figure
    corecore